📄 sf_spline.m
字号:
function [S] = SF_Spline(x,y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% 三次样条 插值多项式的程序
%
% x 插值节点 向量
% y 插值点上的函数值 向量
%
% 返回 分段 3 次 Hermite 插值多项式 Sn, 系数存储在矩阵 S 的每一行中
%
% Oct 2, 2007
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n = size(x,2); % 插值点个数, 注意: 不是书上的 n
for j = 1 : n-1
h(j) = x(j+1) - x(j); % 步长
f(j) = (y(j+1) - y(j)) / h(j); % 一阶差商
end
for j = 2 : n-1
lambda(j) = h(j)/(h(j-1) + h(j));
mu(j) = h(j-1)/(h(j-1) + h(j));
g(j) = 3 * (lambda(j) * f(j-1) + mu(j) * f(j));
end
A = 2 * eye(n,n);
for i = 2 : n-1
A(i,i+1) = mu(i);
A(i,i-1) = lambda(i);
end
b = zeros(n,1);
for i = 2 : n-1
b(i) = g(i);
end
% 2 阶导数边界条件
b(1) = 3*f(1);
A(1,2) = 1;
b(n) = 3*f(n-1);
A(n,n-1) = 1;
m = A \ b; % 求解线性方程组, 得到各节点的一阶导数值
S = [];
for j = 1 : n-1
s = (y(j)/(h(j)^3))*conv([1 -2*x(j+1) x(j+1)^2],[2 h(j)-2*x(j)]) + ...
(y(j+1)/(h(j)^3))*conv([1 -2*x(j) x(j)^2],[-2 h(j)+2*x(j+1)]) + ...
(m(j)/(h(j)^2))*conv([1 -2*x(j+1) x(j+1)^2],[1 -x(j)]) + ...
(m(j+1)/(h(j)^2))*conv([1 -2*x(j) x(j)^2],[1 -x(j+1)]);
S = [S;s];
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -