⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t3dlib1.cpp

📁 《Windows游戏编程大师技巧(第二版)》源代码
💻 CPP
📖 第 1 页 / 共 5 页
字号:
// unlock the primary surface
lpddsprimary->Unlock(NULL);

// reset the primary surface
primary_buffer = NULL;
primary_lpitch = 0;

// return success
return(1);
} // end DDraw_Unlock_Primary_Surface

//////////////////////////////////////////////////////////

UCHAR *DDraw_Lock_Back_Surface(void)
{
// this function locks the secondary back surface and returns a pointer to it
// and updates the global variables secondary buffer, and back_lpitch

// is this surface already locked
if (back_buffer)
   {
   // return to current lock
   return(back_buffer);
   } // end if

// lock the primary surface
DDRAW_INIT_STRUCT(ddsd);
lpddsback->Lock(NULL,&ddsd,DDLOCK_WAIT | DDLOCK_SURFACEMEMORYPTR,NULL); 

// set globals
back_buffer = (UCHAR *)ddsd.lpSurface;
back_lpitch = ddsd.lPitch;

// return pointer to surface
return(back_buffer);

} // end DDraw_Lock_Back_Surface

///////////////////////////////////////////////////////////   
   
int DDraw_Unlock_Back_Surface(void)
{
// this unlocks the secondary

// is this surface valid
if (!back_buffer)
   return(0);

// unlock the secondary surface
lpddsback->Unlock(NULL);

// reset the secondary surface
back_buffer = NULL;
back_lpitch = 0;

// return success
return(1);
} // end DDraw_Unlock_Back_Surface

///////////////////////////////////////////////////////////

DWORD Get_Clock(void)
{
// this function returns the current tick count

// return time
return(GetTickCount());

} // end Get_Clock

///////////////////////////////////////////////////////////

DWORD Start_Clock(void)
{
// this function starts the clock, that is, saves the current
// count, use in conjunction with Wait_Clock()

return(start_clock_count = Get_Clock());

} // end Start_Clock

////////////////////////////////////////////////////////////

DWORD Wait_Clock(DWORD count)
{
// this function is used to wait for a specific number of clicks
// since the call to Start_Clock

while((Get_Clock() - start_clock_count) < count);
return(Get_Clock());

} // end Wait_Clock

///////////////////////////////////////////////////////////

int Draw_Clip_Line16(int x0,int y0, int x1, int y1, int color, 
                    UCHAR *dest_buffer, int lpitch)
{
// this function draws a clipped line

int cxs, cys,
	cxe, cye;

// clip and draw each line
cxs = x0;
cys = y0;
cxe = x1;
cye = y1;

// clip the line
if (Clip_Line(cxs,cys,cxe,cye))
	Draw_Line16(cxs, cys, cxe,cye,color,dest_buffer,lpitch);

// return success
return(1);

} // end Draw_Clip_Line16


///////////////////////////////////////////////////////////

int Draw_Clip_Line(int x0,int y0, int x1, int y1, int color, 
                    UCHAR *dest_buffer, int lpitch)
{
// this function draws a wireframe triangle

int cxs, cys,
	cxe, cye;

// clip and draw each line
cxs = x0;
cys = y0;
cxe = x1;
cye = y1;

// clip the line
if (Clip_Line(cxs,cys,cxe,cye))
	Draw_Line(cxs, cys, cxe,cye,color,dest_buffer,lpitch);

// return success
return(1);

} // end Draw_Clip_Line

///////////////////////////////////////////////////////////

int Clip_Line(int &x1,int &y1,int &x2, int &y2)
{
// this function clips the sent line using the globally defined clipping
// region

// internal clipping codes
#define CLIP_CODE_C  0x0000
#define CLIP_CODE_N  0x0008
#define CLIP_CODE_S  0x0004
#define CLIP_CODE_E  0x0002
#define CLIP_CODE_W  0x0001

#define CLIP_CODE_NE 0x000a
#define CLIP_CODE_SE 0x0006
#define CLIP_CODE_NW 0x0009 
#define CLIP_CODE_SW 0x0005

int xc1=x1, 
    yc1=y1, 
	xc2=x2, 
	yc2=y2;

int p1_code=0, 
    p2_code=0;

// determine codes for p1 and p2
if (y1 < min_clip_y)
	p1_code|=CLIP_CODE_N;
else
if (y1 > max_clip_y)
	p1_code|=CLIP_CODE_S;

if (x1 < min_clip_x)
	p1_code|=CLIP_CODE_W;
else
if (x1 > max_clip_x)
	p1_code|=CLIP_CODE_E;

if (y2 < min_clip_y)
	p2_code|=CLIP_CODE_N;
else
if (y2 > max_clip_y)
	p2_code|=CLIP_CODE_S;

if (x2 < min_clip_x)
	p2_code|=CLIP_CODE_W;
else
if (x2 > max_clip_x)
	p2_code|=CLIP_CODE_E;

// try and trivially reject
if ((p1_code & p2_code)) 
	return(0);

// test for totally visible, if so leave points untouched
if (p1_code==0 && p2_code==0)
	return(1);

// determine end clip point for p1
switch(p1_code)
	  {
	  case CLIP_CODE_C: break;

	  case CLIP_CODE_N:
		   {
		   yc1 = min_clip_y;
		   xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);
		   } break;
	  case CLIP_CODE_S:
		   {
		   yc1 = max_clip_y;
		   xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);
		   } break;

	  case CLIP_CODE_W:
		   {
		   xc1 = min_clip_x;
		   yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);
		   } break;
		
	  case CLIP_CODE_E:
		   {
		   xc1 = max_clip_x;
		   yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);
		   } break;

	// these cases are more complex, must compute 2 intersections
	  case CLIP_CODE_NE:
		   {
		   // north hline intersection
		   yc1 = min_clip_y;
		   xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);

		   // test if intersection is valid, of so then done, else compute next
			if (xc1 < min_clip_x || xc1 > max_clip_x)
				{
				// east vline intersection
				xc1 = max_clip_x;
				yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);
				} // end if

		   } break;
	  
	  case CLIP_CODE_SE:
      	   {
		   // south hline intersection
		   yc1 = max_clip_y;
		   xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);	

		   // test if intersection is valid, of so then done, else compute next
		   if (xc1 < min_clip_x || xc1 > max_clip_x)
		      {
			  // east vline intersection
			  xc1 = max_clip_x;
			  yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);
			  } // end if

		   } break;
	    
	  case CLIP_CODE_NW: 
      	   {
		   // north hline intersection
		   yc1 = min_clip_y;
		   xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);
		   
		   // test if intersection is valid, of so then done, else compute next
		   if (xc1 < min_clip_x || xc1 > max_clip_x)
		      {
			  xc1 = min_clip_x;
		      yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);	
			  } // end if

		   } break;
	  	  
	  case CLIP_CODE_SW:
		   {
		   // south hline intersection
		   yc1 = max_clip_y;
		   xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);	
		   
		   // test if intersection is valid, of so then done, else compute next
		   if (xc1 < min_clip_x || xc1 > max_clip_x)
		      {
			  xc1 = min_clip_x;
		      yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);	
			  } // end if

		   } break;

	  default:break;

	  } // end switch

// determine clip point for p2
switch(p2_code)
	  {
	  case CLIP_CODE_C: break;

	  case CLIP_CODE_N:
		   {
		   yc2 = min_clip_y;
		   xc2 = x2 + (min_clip_y-y2)*(x1-x2)/(y1-y2);
		   } break;

	  case CLIP_CODE_S:
		   {
		   yc2 = max_clip_y;
		   xc2 = x2 + (max_clip_y-y2)*(x1-x2)/(y1-y2);
		   } break;

	  case CLIP_CODE_W:
		   {
		   xc2 = min_clip_x;
		   yc2 = y2 + (min_clip_x-x2)*(y1-y2)/(x1-x2);
		   } break;
		
	  case CLIP_CODE_E:
		   {
		   xc2 = max_clip_x;
		   yc2 = y2 + (max_clip_x-x2)*(y1-y2)/(x1-x2);
		   } break;

		// these cases are more complex, must compute 2 intersections
	  case CLIP_CODE_NE:
		   {
		   // north hline intersection
		   yc2 = min_clip_y;
		   xc2 = x2 + 0.5+(min_clip_y-y2)*(x1-x2)/(y1-y2);

		   // test if intersection is valid, of so then done, else compute next
			if (xc2 < min_clip_x || xc2 > max_clip_x)
				{
				// east vline intersection
				xc2 = max_clip_x;
				yc2 = y2 + 0.5+(max_clip_x-x2)*(y1-y2)/(x1-x2);
				} // end if

		   } break;
	  
	  case CLIP_CODE_SE:
      	   {
		   // south hline intersection
		   yc2 = max_clip_y;
		   xc2 = x2 + 0.5+(max_clip_y-y2)*(x1-x2)/(y1-y2);	

		   // test if intersection is valid, of so then done, else compute next
		   if (xc2 < min_clip_x || xc2 > max_clip_x)
		      {
			  // east vline intersection
			  xc2 = max_clip_x;
			  yc2 = y2 + 0.5+(max_clip_x-x2)*(y1-y2)/(x1-x2);
			  } // end if

		   } break;
	    
	  case CLIP_CODE_NW: 
      	   {
		   // north hline intersection
		   yc2 = min_clip_y;
		   xc2 = x2 + 0.5+(min_clip_y-y2)*(x1-x2)/(y1-y2);
		   
		   // test if intersection is valid, of so then done, else compute next
		   if (xc2 < min_clip_x || xc2 > max_clip_x)
		      {
			  xc2 = min_clip_x;
		      yc2 = y2 + 0.5+(min_clip_x-x2)*(y1-y2)/(x1-x2);	
			  } // end if

		   } break;
	  	  
	  case CLIP_CODE_SW:
		   {
		   // south hline intersection
		   yc2 = max_clip_y;
		   xc2 = x2 + 0.5+(max_clip_y-y2)*(x1-x2)/(y1-y2);	
		   
		   // test if intersection is valid, of so then done, else compute next
		   if (xc2 < min_clip_x || xc2 > max_clip_x)
		      {
			  xc2 = min_clip_x;
		      yc2 = y2 + 0.5+(min_clip_x-x2)*(y1-y2)/(x1-x2);	
			  } // end if

		   } break;
	
	  default:break;

	  } // end switch

// do bounds check
if ((xc1 < min_clip_x) || (xc1 > max_clip_x) ||
	(yc1 < min_clip_y) || (yc1 > max_clip_y) ||
	(xc2 < min_clip_x) || (xc2 > max_clip_x) ||
	(yc2 < min_clip_y) || (yc2 > max_clip_y) )
	{
	return(0);
	} // end if

// store vars back
x1 = xc1;
y1 = yc1;
x2 = xc2;
y2 = yc2;

return(1);

} // end Clip_Line

///////////////////////////////////////////////////////////

int Draw_Line(int x0, int y0, // starting position 
              int x1, int y1, // ending position
              int color,     // color index
              UCHAR *vb_start, int lpitch) // video buffer and memory pitch
{
// this function draws a line from xo,yo to x1,y1 using differential error
// terms (based on Bresenahams work)

int dx,             // difference in x's
    dy,             // difference in y's
    dx2,            // dx,dy * 2
    dy2, 
    x_inc,          // amount in pixel space to move during drawing
    y_inc,          // amount in pixel space to move during drawing
    error,          // the discriminant i.e. error i.e. decision variable
    index;          // used for looping

// pre-compute first pixel address in video buffer
vb_start = vb_start + x0 + y0*lpitch;

// compute horizontal and vertical deltas
dx = x1-x0;
dy = y1-y0;

// test which direction the line is going in i.e. slope angle
if (dx>=0)
   {
   x_inc = 1;

   } // end if line is moving right
else
   {
   x_inc = -1;
   dx    = -dx;  // need absolute value

   } // end else moving left

// test y component of slope

if (dy>=0)
   {
   y_inc = lpitch;
   } // end if line is moving down
else
   {
   y_inc = -lpitch;
   dy    = -dy;  // need absolute value

   } // end else moving up

// compute (dx,dy) * 2
dx2 = dx << 1;
dy2 = dy << 1;

// now based on which delta is greater we can draw the line
if (dx > dy)
   {
   // initialize error term
   error = dy2 - dx; 

   // draw the line
   for (index=0; index <= dx; index++)
       {
       // set the pixel
       *vb_start = color;

       // test if error has overflowed
       if (error >= 0) 
          {
          error-=dx2;

          // move to next line
          vb_start+=y_inc;

	   } // end if error overflowed

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -