📄 seg_oneseed.m
字号:
image=imread('mri1.jpg');
I=rgb2gray(image);
figure,imshow(I),title('原始图像')
I=double(I)/255;
[M,N]=size(I);
[y,x]=getpts; %获得区域生长起始点
x1=round(x); %横坐标取整
y1=round(y); %纵坐标取整
seed=I(x1,y1); %将生长起始点灰度值存入seed中
Y=zeros(M,N); %作一个全零与原图像等大的图像矩阵Y,作为输出图像矩阵
Y(x1,y1)=1; %将Y中与所取点相对应位置的点设置为白场
sum=seed; %储存符合区域生长条件的点的灰度值的和
suit=1; %储存符合区域生长条件的点的个数
count=1; %记录每次判断一点周围八点符合条件的新点的数目
threshold=0.05555; %域值
while count>0
s=0; %记录判断一点周围八点时,符合条件的新点的灰度值之和
count=0;
for i=1:M
for j=1:N
if Y(i,j)==1
if (i-1)>0 & (i+1)<(M+1) & (j-1)>0 & (j+1)<(N+1) %判断此点是否为图像边界上的点
for u= -1:1 %判断点周围八点是否符合域值条件
for v= -1:1 %u,v为偏移量
if Y(i+u,j+v)==0 & abs(I(i+u,j+v)-seed)<=threshold %判断是否未存在于输出矩阵Y,并且为符合域值条件的点
Y(i+u,j+v)=1; %符合以上两条件即将其在Y中与之位置对应的点设置为白场
count=count+1;
s=s+I(i+u,j+v); %此点的灰度之加入s中
end
end
end
end
end
end
end
suit=suit+count; %将n加入符合点数计数器中
sum=sum+s; %将s加入符合点的灰度值总合中
seed=sum/suit; %计算新的灰度平均值
end
figure,imshow(Y),title('分割后图像')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -