📄 fast_newt_dir.m
字号:
function X=fast_newt_dir(D,B),%%%%%%%%%% Fast solution of Newton matrix equation D .* X + X' = B %%%%%%%%%%% using eigenvalue decomposition of 2x2 matrices delta=1e-8;normB=norm(B(:)); %% Scale to avoid too small/large numbersB=B/normB;b1=B;b2=B';a11=D;a22=D';Tr=a11+a22; % Tracedt=a11.*a22-1; % DeterminantT2= Tr/2;sq=sqrt(T2.^2-dt);lam1=(T2-sq);lam2=(T2+sq);ss=lam1-a11;norms=sqrt(1+ss.^2);s11=1./norms;s21=ss./norms;s12=s21;s22=-s11;c1=(s11.*b1+s21.*b2)./max(abs(lam1),delta);c2=(s12.*b1+s22.*b2)./max(abs(lam2),delta);%c1=(s11.*b1+s21.*b2)./abs(lam1);%c2=(s12.*b1+s22.*b2)./abs(lam2);%c1=(s11.*b1+s21.*b2)./lam1;%c2=(s12.*b1+s22.*b2)./lam2;x1=s11.*c1+s12.*c2;%x2=s21*c1+s22*c2X=x1;% Diagonal should be treated separately[n,n]=size(D); idiag=[1:(n+1):n^2]';X(idiag)=B(idiag)./(D(idiag)+1);lam1(idiag)= D(idiag)+1;lam2(idiag)=lam1(idiag);lammin=min([lam1(:);lam2(:)]);lammax=max([lam1(:);lam2(:)]);fprintf(' eigval=%.2g _ %.2g ',lammin,lammax)%if lammin < delta, fprintf('\nNegative or small eig. value of the Hessian: lammin=%.2e\n',lammin);end%keyboardX=X*normB; %% Scale back to avoid too small/large numbers
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -