📄 mypca.m
字号:
% MYPCA - principal component analysis%% [Y,B,R0]=mypca(X0,N) %%Input:% X0 - input signals in rows% N - number of princip. components%%Output:% Y - normalized principal components% B - transformation matrix: Y=B*(X0-mean(X0))% R0 - cov(X0);function [Y,B,R0]=mypca(X0,N), [Nsn,TotT]=size(X0); if nargin<2 N=Nsn;end X=X0-mean(X0,2)*ones(1,TotT); R0=cov(X'); [S0,lam0]=eig(0.5*(R0+R0'));lam0=diag(lam0); [lm0,I0]=sort(lam0);%lm(Nsn:-1:1)' II0=I0(Nsn:-1:Nsn-N+1); lam1=lam0(II0); S1=S0(:,II0); B=(S1*diag(sqrt(1 ./(lam1+1e-20))))'; Y=B*X; % presphearing
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -