⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dh.java

📁 一个远程登陆器的原代码
💻 JAVA
字号:
// CRYPTO LIBRARY FOR EXCHANGING KEYS
// USING THE DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL

// The diffie-hellman can be used to securely exchange keys
// between parties, where a third party eavesdropper given
// the values being transmitted cannot determine the key.

// Implemented by Lee Griffiths, Jan 2004.
// This software is freeware, you may use it to your discretion,
// however by doing so you take full responsibility for any damage
// it may cause.

// Hope you find it useful, even if you just use some of the functions
// out of it like the prime number generator and the XtoYmodN function.

// It would be great if you could send me emails to: lee.griffiths@first4internet.co.uk
// with any suggestions, comments, or questions!

// Enjoy.

// Adopted to ms-logon for ultravnc and ported to Java by marscha, 2006.

//import java.lang.Math;

public class DH {

	public DH() {
		maxNum = (((long) 1) << DH_MAX_BITS) - 1;
	}

	public DH(long generator, long modulus) throws Exception {
		maxNum = (((long) 1) << DH_MAX_BITS) - 1;
		if (generator >= maxNum || modulus >= maxNum)
			throw new Exception("Modulus or generator too large.");
		gen = generator;
		mod = modulus;
	}

	private long rng(long limit) {
		return (long) (java.lang.Math.random() * limit);
	}

	//Performs the miller-rabin primality test on a guessed prime n.
	//trials is the number of attempts to verify this, because the function
	//is not 100% accurate it may be a composite.  However setting the trial
	//value to around 5 should guarantee success even with very large primes
	private boolean millerRabin (long n, int trials) { 
		long a = 0; 
	
		for (int i = 0; i < trials; i++) { 
			a = rng(n - 3) + 2;// gets random value in [2..n-1] 
			if (XpowYmodN(a, n - 1, n) != 1) return false; //n composite, return false 
		}
		return true; // n probably prime 
	} 
	
	//Generates a large prime number by
	//choosing a randomly large integer, and ensuring the value is odd
	//then uses the miller-rabin primality test on it to see if it is prime
	//if not the value gets increased until it is prime
	private long generatePrime() {
		long prime = 0;
	
		do {
			long start = rng(maxNum);
			prime = tryToGeneratePrime(start);
		} while (prime == 0);
		return prime;
	}
	 
	private long tryToGeneratePrime(long prime) {
		//ensure it is an odd number
		if ((prime & 1) == 0)
			prime += 1;
	
		long cnt = 0;
		while (!millerRabin(prime, 25) && (cnt++ < DH_RANGE) && prime < maxNum) {
			prime += 2;
			if ((prime % 3) == 0) prime += 2;
		}
		return (cnt >= DH_RANGE || prime >= maxNum) ? 0 : prime;
	}
	 
	//Raises X to the power Y in modulus N
	//the values of X, Y, and N can be massive, and this can be 
	//achieved by first calculating X to the power of 2 then 
	//using power chaining over modulus N
	private long XpowYmodN(long x, long y, long N) {
		long result = 1;
		final long oneShift63 = ((long) 1) << 63;
		
		for (int i = 0; i < 64; y <<= 1, i++){
			result = result * result % N;
			if ((y & oneShift63) != 0)
				result = result * x % N;
		}
		return result;
	}
	
	public void createKeys() {
		gen = generatePrime();
		mod = generatePrime();
	
		if (gen > mod) {
			long swap = gen;
			gen  = mod;
			mod  = swap;
		}
	}
	
	public long createInterKey() {
		priv = rng(maxNum);
		return pub = XpowYmodN(gen,priv,mod);
	}
	
	public long createEncryptionKey(long interKey) throws Exception {
		if (interKey >= maxNum){
			throw new Exception("interKey too large");
		}
		return key = XpowYmodN(interKey,priv,mod);
	}
	
	
	public long getValue(int flags) {
		switch (flags) {
			case DH_MOD:
				return mod;
			case DH_GEN:
				return gen;
			case DH_PRIV:
				return priv;
			case DH_PUB:
				return pub;
			case DH_KEY:
				return key;
			default:
				return (long) 0;
		}
	}
	
	public int bits(long number){
		for (int i = 0; i < 64; i++){
			number /= 2;
			if (number < 2) return i;
		}
		return 0;
	}
	
	public static byte[] longToBytes(long number) {
		byte[] bytes  = new byte[8];
		for (int i = 0; i < 8; i++) {
			bytes[i] = (byte) (0xff & (number >> (8 * (7 - i))));
		}
		return bytes;
	}
	
	public static long bytesToLong(byte[] bytes) {
		long result = 0;
		for (int i = 0; i < 8; i++) {
			result <<= 8;
			result += (byte) bytes[i];
		}
		return result;
	}

	private long gen;
	private long mod;
	private long priv;
	private long pub;
	private long key;
	private long maxNum;

	private static final int DH_MAX_BITS = 31;
	private static final int DH_RANGE = 100;

	private static final int DH_MOD	 = 1;
	private static final int DH_GEN	 = 2;
	private static final int DH_PRIV = 3;
	private static final int DH_PUB  = 4;
	private static final int DH_KEY  = 5;

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -