📄 demos.xml
字号:
<?xml version="1.0" encoding="utf-8"?><!-- $Revision: 1.6.2.2 $ $Date: 2004/02/06 00:25:33 $ --><demos> <name>Neural Network</name> <type>toolbox</type> <icon>$toolbox/matlab/icons/matlabicon.gif</icon> <description><![CDATA[<p>The Neural Network Toolbox includes many kinds of powerful networksfor solving problems including:</p><ul> <li> function approximation, modeling,</li> <li> signal processing and prediction</li> <li> classification, and clustering.</li></ul><p>These tools are an essential part of many applications, includingengineering, finance, medicine, and artificial intelligence.</p>]]></description> <demosection> <label>Neurons</label> <demoitem> <label>Simple neuron and transfer functions</label> <callback>nnd2n1</callback> </demoitem> <demoitem> <label>Neuron with vector input</label> <callback>nnd2n2</callback> </demoitem> </demosection> <demosection> <label>Perceptrons</label> <demoitem> <label>Decision Boundaries</label> <callback>nnd4db</callback> </demoitem> <demoitem> <label>Perceptron learning rule</label> <callback>nnd4pr</callback> </demoitem> <demoitem> <label>Classification with a 2-input perceptron</label> <file>html/demop1.html</file> <callback>playshow demop1</callback> </demoitem> <demoitem> <label>Outlier input vectors</label> <file>html/demop4.html</file> <callback>playshow demop4</callback> </demoitem> <demoitem> <label>Normalized perceptron rule</label> <file>html/demop5.html</file> <callback>playshow demop5</callback> </demoitem> <demoitem> <label>Linearly non-separable vectors</label> <file>html/demop6.html</file> <callback>playshow demop6</callback> </demoitem> </demosection> <demosection> <label>Linear Networks</label> <demoitem> <label>Pattern association showing error surface</label> <file>html/demolin1.html</file> <callback>playshow demolin1</callback> </demoitem> <demoitem> <label>Training a linear neuron</label> <file>html/demolin2.html</file> <callback>playshow demolin2</callback> </demoitem> <demoitem> <label>Linear classification system</label> <callback>nnd10lc</callback> </demoitem> <demoitem> <label>Adaptive noise cancellation</label> <file>html/demolin8.html</file> <callback>playshow demolin8</callback> </demoitem> <demoitem> <label>Adaptive noise cancellation in airplane</label> <callback>nnd10nc</callback> </demoitem> <demoitem> <label>Linear fit of nonlinear problem</label> <file>html/demolin4.html</file> <callback>playshow demolin4</callback> </demoitem> <demoitem> <label>Underdetermined problem</label> <file>html/demolin5.html</file> <callback>playshow demolin5</callback> </demoitem> <demoitem> <label>Linearly dependent problem</label> <file>html/demolin6.html</file> <callback>playshow demolin6</callback> </demoitem> <demoitem> <label>Too large a learning rate</label> <file>html/demolin7.html</file> <callback>playshow demolin7</callback> </demoitem> </demosection> <demosection> <label>Backpropagation</label> <demoitem> <label>Generalization</label> <callback>nnd11gn</callback> </demoitem> <demoitem> <label>Steepest descent backpropagation</label> <callback>nnd12sd1</callback> </demoitem> <demoitem> <label>Momentum backpropagation</label> <callback>nnd12mo</callback> </demoitem> <demoitem> <label>Variable learning rate backpropagation</label> <callback>nnd12vl</callback> </demoitem> <demoitem> <label>Conjugate gradient backpropagation</label> <callback>nnd12cg</callback> </demoitem> <demoitem> <label>Marquardt backpropagation</label> <callback>nnd12m</callback> </demoitem> </demosection> <demosection> <label>Radial Basis Networks</label> <demoitem> <label>Radial basis approximation</label> <file>html/demorb1.html</file> <callback>playshow demorb1</callback> </demoitem> <demoitem> <label>Radial basis underlapping neurons</label> <file>html/demorb3.html</file> <callback>playshow demorb3</callback> </demoitem> <demoitem> <label>Radial basis overlapping neurons</label> <file>html/demorb4.html</file> <callback>playshow demorb4</callback> </demoitem> <demoitem> <label>GRNN function approximation</label> <file>html/demogrn1.html</file> <callback>playshow demogrn1</callback> </demoitem> <demoitem> <label>PNN classification</label> <file>html/demopnn1.html</file> <callback>playshow demopnn1</callback> </demoitem> </demosection> <demosection> <label>Self-organizing Networks</label> <demoitem> <label>Competitive learning</label> <file>html/democ1.html</file> <callback>playshow democ1</callback> </demoitem> <demoitem> <label>One-dimensional self-organizing map</label> <file>html/demosm1.html</file> <callback>playshow demosm1</callback> </demoitem> <demoitem> <label>Two-dimensional self-organizing map</label> <file>html/demosm2.html</file> <callback>playshow demosm2</callback> </demoitem> </demosection> <demosection> <label>LVQ Networks</label> <demoitem> <label>Learning vector quantization</label> <file>html/demolvq1.html</file> <callback>playshow demolvq1</callback> </demoitem> </demosection> <demosection> <label>Hopfield Networks</label> <demoitem> <label>Hopfield two neuron design</label> <file>html/demohop1.html</file> <callback>playshow demohop1</callback> </demoitem> <demoitem> <label>Hopfield unstable equilibria</label> <file>html/demohop2.html</file> <callback>playshow demohop2</callback> </demoitem> <demoitem> <label>Hopfield three neuron design</label> <file>html/demohop3.html</file> <callback>playshow demohop3</callback> </demoitem> <demoitem> <label>Hopfield spurious stable points</label> <file>html/demohop4.html</file> <callback>playshow demohop4</callback> </demoitem> </demosection> <demosection> <label>Application Examples</label> <demoitem> <label>Linear design (command-line)</label> <callback>applin1</callback> </demoitem> <demoitem> <label>Adaptive linear prediction (command-line)</label> <callback>applin2</callback> </demoitem> <demoitem> <label>Elman amplitude detection (command-line)</label> <callback>appelm1</callback> </demoitem> <demoitem> <label>Character recognition (command-line)</label> <callback>appcr1</callback> </demoitem> </demosection> <demosection> <label>Control Systems</label> <demoitem> <label>Predictive control of a tank reactor (sim)</label> <callback>predcstr</callback> <dependency>Simulink</dependency> </demoitem> <demoitem> <label>NARMA-L2 control of a magnet levitation system (sim)</label> <callback>narmamaglev</callback> <dependency>Simulink</dependency> </demoitem> <demoitem> <label>Reference control of a robot arm (sim)</label> <callback>mrefrobotarm</callback> <dependency>Simulink</dependency> </demoitem> </demosection> <demosection> <label>Other Demos</label> <demoitem> <label>Other Neural Network Design textbook demos</label> <callback>nnd</callback> </demoitem> </demosection></demos>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -