📄 demosm2.html
字号:
<!--This HTML is auto-generated from an m-file.Your changes will be overwritten.--><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:x-large">A Two-dimensional Self-organizing Map</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">As in DEMOSM1, this self-organizing map will learn to represent differentregions of the input space where input vectors occur. In this demo, however,the neurons will arrange themselves in a two-dimensional grid, rather than aline.</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">Copyright 1992-2002 The MathWorks, Inc.$Revision: 1.18 $ $Date: 2002/03/29 19:36:02 $</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">We would like to classify 1000 two-element vectors occuring in a rectangularshaped vector space.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">P = rands(2,1000);plot(P(1,:),P(2,:),<span style="color:#B20000">'+r'</span>)</pre><img xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" src="demosm2_img02.gif"><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">We will use a 5 by 6 layer of neurons to classify the vectors above. We wouldlike each neuron to respond to a different region of the rectangle, andneighboring neurons to respond to adjacent regions. We create a layer of 30neurons spread out in a 5 by 6 grid:</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">net = newsom([0 1; 0 1],[5 6]);</pre><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">We can visualize the network we have just created with PLOTSOM.</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">Each neuron is represented by a red dot at the location of its two weights.Initially all the neurons have the same weights in the middle of the vectors,so only one dot appears.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">plotsom(net.iw{1,1},net.layers{1}.distances)</pre><img xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" src="demosm2_img04.gif"><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">Now we train the map on the 1000 vectors for 1 epoch and replot the networkweights.</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">After training, note that the layer of neurons has begun to self-organize sothat each neuron now classifies a different region of the input space, andadjacent (connected) neurons respond to adjacent regions.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">net.trainParam.epochs = 1;net = train(net,P);plotsom(net.iw{1,1},net.layers{1}.distances)</pre><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:gray; font-style:italic;">TRAINR, Epoch 0/1TRAINR, Epoch 1/1TRAINR, Maximum epoch reached.</pre><img xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" src="demosm2_img05.gif"><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">We can now use SIM to classify vectors by giving them to the network andseeing which neuron responds.</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">The neuron indicated by "a" responded with a "1", so p belongs to that class.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">p = [0.5;0.3];a = sim(net,p)</pre><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:gray; font-style:italic;">a = (19,1) 1</pre><originalCode xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" code="%% A Two-dimensional Self-organizing Map
% As in DEMOSM1, this self-organizing map will learn to represent different
% regions of the input space where input vectors occur. In this demo, however,
% the neurons will arrange themselves in a two-dimensional grid, rather than a
% line.
%
% Copyright 1992-2002 The MathWorks, Inc. 
% $Revision: 1.18 $ $Date: 2002/03/29 19:36:02 $

%%
% We would like to classify 1000 two-element vectors occuring in a rectangular
% shaped vector space.

P = rands(2,1000);
plot(P(1,:),P(2,:),'+r')

%%
% We will use a 5 by 6 layer of neurons to classify the vectors above. We would
% like each neuron to respond to a different region of the rectangle, and
% neighboring neurons to respond to adjacent regions. We create a layer of 30
% neurons spread out in a 5 by 6 grid:

net = newsom([0 1; 0 1],[5 6]);

%%
% We can visualize the network we have just created with PLOTSOM.
% 
% Each neuron is represented by a red dot at the location of its two weights.
% Initially all the neurons have the same weights in the middle of the vectors,
% so only one dot appears.

plotsom(net.iw{1,1},net.layers{1}.distances)

%%
% Now we train the map on the 1000 vectors for 1 epoch and replot the network
% weights.
% 
% After training, note that the layer of neurons has begun to self-organize so
% that each neuron now classifies a different region of the input space, and
% adjacent (connected) neurons respond to adjacent regions.

net.trainParam.epochs = 1;
net = train(net,P);
plotsom(net.iw{1,1},net.layers{1}.distances)

%%
% We can now use SIM to classify vectors by giving them to the network and
% seeing which neuron responds.
% 
% The neuron indicated by "a" responded with a "1", so p belongs to that class.

p = [0.5;0.3];
a = sim(net,p)
"></originalCode>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -