⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 demolin2.html

📁 神经网络学习过程的实例程序
💻 HTML
字号:
<!--This HTML is auto-generated from an m-file.Your changes will be overwritten.--><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:x-large">Training a Linear Neuron</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">A linear neuron is trained to respond to specific inputs with target outputs.</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">Copyright 1992-2002 The MathWorks, Inc.$Revision: 1.14 $  $Date: 2002/03/29 19:36:18 $</p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">P defines two 1-element input patterns (column vectors).  T defines associated1-element targets (column vectors).  A single input linear neuron with a biascan be used to solve this problem.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">P = [1.0 -1.2];T = [0.5 1.0];</pre><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">ERRSURF calculates errors for a neuron with a range of possible weight andbias values.  PLOTES plots this error surface with a contour plot underneath.The best weight and bias values are those that result in the lowest point onthe error surface.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">w_range = -1:0.2:1;  b_range = -1:0.2:1;ES = errsurf(P,T,w_range,b_range,<span style="color:#B20000">'purelin'</span>);plotes(w_range,b_range,ES);</pre><img xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" src="demolin2_img03.gif"><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">MAXLINLR finds the fastest stable learning rate for training a linear network.For this demo, this rate will only be 40% of this maximum.  NEWLIN creates alinear neuron.  NEWLIN takes these arguments: 1) Rx2 matrix of min and maxvalues for R input elements, 2) Number of elements in the output vector, 3)Input delay vector, and 4) Learning rate.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">maxlr = 0.40*maxlinlr(P,<span style="color:#B20000">'bias'</span>);net = newlin([-2 2],1,[0],maxlr);</pre><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">Override the default training parameters by setting the performance goal.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">net.trainParam.goal = .001;</pre><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">To show the path of the training we will train only one epoch at a time andcall PLOTEP every epoch.  The plot shows a history of the training.  Each dotrepresents an epoch and the blue lines show each change made by the learningrule (Widrow-Hoff by default).</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px"><span style="color:green">% [net,tr] = train(net,P,T);</span>net.trainParam.epochs = 1;net.trainParam.show = NaN;h=plotep(net.IW{1},net.b{1},mse(T-sim(net,P)));     [net,tr] = train(net,P,T);                                                    r = tr;epoch = 1;<span style="color:blue">while</span> true   epoch = epoch+1;   [net,tr] = train(net,P,T);   <span style="color:blue">if</span> length(tr.epoch) &gt; 1      h = plotep(net.IW{1,1},net.b{1},tr.perf(2),h);      r.epoch=[r.epoch epoch];       r.perf=[r.perf tr.perf(2)];      r.vperf=[r.vperf NaN];      r.tperf=[r.tperf NaN];   <span style="color:blue">else</span>      <span style="color:blue">break</span>   <span style="color:blue">end</span><span style="color:blue">end</span>tr=r;</pre><img xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" src="demolin2_img06.gif"><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">The train function outputs the trained network and a history of the trainingperformance (tr).  Here the errors are plotted with respect to trainingepochs: The error dropped until it fell beneath the error goal (the blackline).  At that point training stopped.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">plotperf(tr,net.trainParam.goal);</pre><img xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" src="demolin2_img07.gif"><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:#990000; font-weight:bold; font-size:medium; page-break-before: auto;"><a name=""></a></p><p xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">Now use SIM to test the associator with one of the original inputs, -1.2, andsee if it returns the target, 1.0.  The result is very close to 1, the target.This could be made even closer by lowering the performance goal.</p><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="position: relative; left:30px">p = -1.2;a = sim(net, p)</pre><pre xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" style="color:gray; font-style:italic;">a =    0.9817</pre><originalCode xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd" code="%% Training a Linear Neuron&#xA;% A linear neuron is trained to respond to specific inputs with target outputs.&#xA;%&#xA;% Copyright 1992-2002 The MathWorks, Inc.&#xA;% $Revision: 1.14 $  $Date: 2002/03/29 19:36:18 $&#xA;&#xA;%%&#xA;% P defines two 1-element input patterns (column vectors).  T defines associated&#xA;% 1-element targets (column vectors).  A single input linear neuron with a bias&#xA;% can be used to solve this problem.&#xA;&#xA;P = [1.0 -1.2];&#xA;T = [0.5 1.0];&#xA;&#xA;%%&#xA;% ERRSURF calculates errors for a neuron with a range of possible weight and&#xA;% bias values.  PLOTES plots this error surface with a contour plot underneath.&#xA;% The best weight and bias values are those that result in the lowest point on&#xA;% the error surface.&#xA;&#xA;w_range = -1:0.2:1;  b_range = -1:0.2:1;&#xA;ES = errsurf(P,T,w_range,b_range,'purelin');&#xA;plotes(w_range,b_range,ES);&#xA;&#xA;%%&#xA;% MAXLINLR finds the fastest stable learning rate for training a linear network.&#xA;% For this demo, this rate will only be 40% of this maximum.  NEWLIN creates a&#xA;% linear neuron.  NEWLIN takes these arguments: 1) Rx2 matrix of min and max&#xA;% values for R input elements, 2) Number of elements in the output vector, 3)&#xA;% Input delay vector, and 4) Learning rate.&#xA;&#xA;maxlr = 0.40*maxlinlr(P,'bias');&#xA;net = newlin([-2 2],1,[0],maxlr);&#xA;&#xA;%%&#xA;% Override the default training parameters by setting the performance goal.&#xA;&#xA;net.trainParam.goal = .001;&#xA;&#xA;%%&#xA;% To show the path of the training we will train only one epoch at a time and&#xA;% call PLOTEP every epoch.  The plot shows a history of the training.  Each dot&#xA;% represents an epoch and the blue lines show each change made by the learning&#xA;% rule (Widrow-Hoff by default).&#xA;&#xA;% [net,tr] = train(net,P,T);&#xA;net.trainParam.epochs = 1;&#xA;net.trainParam.show = NaN;&#xA;h=plotep(net.IW{1},net.b{1},mse(T-sim(net,P)));     &#xA;[net,tr] = train(net,P,T);                                                    &#xA;r = tr;&#xA;epoch = 1;&#xA;while true&#xA;   epoch = epoch+1;&#xA;   [net,tr] = train(net,P,T);&#xA;   if length(tr.epoch) &gt; 1&#xA;      h = plotep(net.IW{1,1},net.b{1},tr.perf(2),h);&#xA;      r.epoch=[r.epoch epoch]; &#xA;      r.perf=[r.perf tr.perf(2)];&#xA;      r.vperf=[r.vperf NaN];&#xA;      r.tperf=[r.tperf NaN];&#xA;   else&#xA;      break&#xA;   end&#xA;end&#xA;tr=r;&#xA;&#xA;%%&#xA;% The train function outputs the trained network and a history of the training&#xA;% performance (tr).  Here the errors are plotted with respect to training&#xA;% epochs: The error dropped until it fell beneath the error goal (the black&#xA;% line).  At that point training stopped.&#xA;&#xA;plotperf(tr,net.trainParam.goal);&#xA;&#xA;%%&#xA;% Now use SIM to test the associator with one of the original inputs, -1.2, and&#xA;% see if it returns the target, 1.0.  The result is very close to 1, the target.&#xA;% This could be made even closer by lowering the performance goal.&#xA;&#xA;p = -1.2;&#xA;a = sim(net, p)&#xA;"></originalCode>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -