📄 bisection.m
字号:
function mesh= bisection(mesh,eta,res,osc,theta1,theta2)% BISECTION refines the triangulation using newest vertex bisection%% USAGE% mesh = bisection(mesh,eta,theta)%% INPUT % mesh: current mesh% theta1,theta2: parameter in (0,1). % We mark minimal number of triangles M such that% \sum_{T \in M} \eta_T > \theta*\sum\eta_T%% OUTPUT% mesh: new mesh after refinement%% REFERENCE% Long Chen,% Short bisection implementation in MATLAB% Research Notes, 2006 %--------------------------------------------------------------------------% Construct data structure%--------------------------------------------------------------------------mesh.elem = label(mesh.node,mesh.elem);edge = [mesh.elem(:,[1,2]); mesh.elem(:,[1,3]); mesh.elem(:,[2,3])];edge = unique(sort(edge,2),'rows');N = size(mesh.node,1); NT = size(mesh.elem,1); NE = size(edge,1);dualEdge = sparse(mesh.elem(:,[1,2,3]),mesh.elem(:,[2,3,1]),[1:NT,1:NT,1:NT]);d2p = sparse(edge(:,[1,2]),edge(:,[2,1]),[1:NE,1:NE]);% Detailed explanation can be founded at% Manual --> Data Structure --> Auxlliary data structure %--------------------------------------------------------------------------% Meomery management for node arrary%--------------------------------------------------------------------------recycle = find(mesh.type==0); last = length(recycle);% Coarsening can create empty spaces in the node array. We collect those% scattered spaces in recycle arrary and 'last' will point out the last% empty node index. % mesh.type array is used to distinguish the type of nodes:% 0: empty nodes (deleted by coarsening);% 1: nodes in the initial triangulation or nodes from regular refinement;% 2: new added nodes due to refinement.%--------------------------------------------------------------------------% Mark triangles according to the error indicator%--------------------------------------------------------------------------total =max(eta); [temp,ix] = sort(-eta); % sort in descent ordermarker1 = zeros(NT,1);marker2 = zeros(NE,1);marker3= zeros(NT,1);for t = 1:NT index = 1; ct = ix(t);i=0; if (eta(ct) <(theta1^2)*total), break; end % err on marked elem big enough if(marker1(ct)==0) marker1(ct)=ct; while (index==1) base = d2p(mesh.elem(ct,2),mesh.elem(ct,3)); if (marker2(base)>0) index = 0;% base is already marked % mark the interior node if (i==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker3(ct) = newNode; mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:)... + mesh.node(marker2(base),:))/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,1))... +mesh.solu(marker2(base)))/2; i=i+1; end end if (marker2(base)==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:)... + mesh.node(mesh.elem(ct,3),:) )/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2))... + mesh.solu(mesh.elem(ct,3)) )/2; % mark the interior node if (i==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker3(ct) = newNode; mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:) ... +mesh.node( marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3))),:))/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2)) ... + mesh.solu(marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)))))/2; i=i+1; end % Find the element which shares the base edge of the current % element. If it is 0, it means the base of the current element % is on the boundary. ct = dualEdge(mesh.elem(ct,3),mesh.elem(ct,2)); if (ct==0), index=0; end % base is on the boundary % the while will ended if % 1. ct==0 means we are on the boundary % 2. base(ct) is already marked end end ct=ix(t);index=1; base = d2p(mesh.elem(ct,3),mesh.elem(ct,1)); if (marker2(base)>0), index = 0;end % base is already marked if (marker2(base)==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker2( d2p(mesh.elem(ct,3),mesh.elem(ct,1)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,3),:)... +mesh.node(mesh.elem(ct,1),:) )/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,3))... + mesh.solu(mesh.elem(ct,1)) )/2; end ct = dualEdge(mesh.elem(ct,1),mesh.elem(ct,3)); while(index==1) if (ct==0),index=0;end if (ct>0) base = d2p(mesh.elem(ct,2),mesh.elem(ct,3)); if (marker2(base)>0), index = 0; end% base is already marked if (marker2(base)==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:)... + mesh.node(mesh.elem(ct,3),:) )/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2))... + mesh.solu(mesh.elem(ct,3)) )/2; % Find the element which shares the base edge of the current % element. If it is 0, it means the base of the current element % is on the boundary. ct = dualEdge(mesh.elem(ct,3),mesh.elem(ct,2)); end % base is on the boundary % the while will ended if % 1. ct==0 means we are on the boundary % 2. base(ct) is already marked end end ct=ix(t);index=1; base = d2p(mesh.elem(ct,1),mesh.elem(ct,2)); if (marker2(base)>0), index = 0;end % base is already marked if (marker2(base)==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker2( d2p(mesh.elem(ct,1),mesh.elem(ct,2)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:)... +mesh.node(mesh.elem(ct,2),:) )/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,3))... + mesh.solu(mesh.elem(ct,1)) )/2; end ct = dualEdge(mesh.elem(ct,2),mesh.elem(ct,1)); while(index==1) if (ct==0),index=0;end if (ct>0) base = d2p(mesh.elem(ct,2),mesh.elem(ct,3)); if (marker2(base)>0), index = 0; end% base is already marked if (marker2(base)==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:) ... + mesh.node(mesh.elem(ct,3),:) )/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2))... + mesh.solu(mesh.elem(ct,3)) )/2; % Find the element which shares the base edge of the current % element. If it is 0, it means the base of the current element % is on the boundary. ct = dualEdge(mesh.elem(ct,3),mesh.elem(ct,2)); end % base is on the boundary % the while will ended if % 1. ct==0 means we are on the boundary % 2. base(ct) is already marked end end end end % end of for loop on all elements total = max(res); [temp,ix] = sort(-res);for t = 1:NT index = 1; ct = ix(t);i=0; if ( eta(ct)<(theta2^2)*total), break; end % err on marked elem big enough if(marker1(ct)==0) marker1(ct)=ct; while (index==1) base = d2p(mesh.elem(ct,2),mesh.elem(ct,3)); if (marker2(base)>0) index = 0; % base is already marked if (i==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker3(ct) = newNode; mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:)... + mesh.node(marker2(base),:))/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,1))... + mesh.solu(marker2(base)))/2; i=i+1; end else if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:) + ... mesh.node(mesh.elem(ct,3),:) )/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2)) + ... mesh.solu(mesh.elem(ct,3)) )/2; %mark interior node if (i==0) if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker3(ct) = newNode; mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:) + ... mesh.node( marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3))),:))/2; mesh.type(newNode) = 2; mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2)) + ... mesh.solu(marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3))),:))/2; i=i+1; end ct = dualEdge(mesh.elem(ct,3),mesh.elem(ct,2)); if (ct==0), index=0; end % base is on the boundary % the while will ended if % 1. ct==0 means we are on the boundary % 2. base(ct) is already marked end end ct=ix(t);index=1; base = d2p(mesh.elem(ct,3),mesh.elem(ct,1)); if (marker2(base)>0), index = 0; % base is already marked else if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker2( d2p(mesh.elem(ct,3),mesh.elem(ct,1)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,3),:) + ... mesh.node(mesh.elem(ct,1),:) )/2; mesh.type(newNode) = 2; % newNode is added by the refinement mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,3)) + ... mesh.solu(mesh.elem(ct,1)) )/2; end ct = dualEdge(mesh.elem(ct,1),mesh.elem(ct,3)); while(index==1) if (ct==0) index=0; else base = d2p(mesh.elem(ct,2),mesh.elem(ct,3)); if (marker2(base)>0), index = 0; % base is already marked else if (last==0), newNode = size(mesh.node,1) + 1; end if (last>0), newNode = recycle(last); last = last-1; end marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode; % A new node is added to the mesh. Numerical solution at this % new added node is approximated by linear interpolation. mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:) + ... mesh.node(mesh.elem(ct,3),:) )/2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -