⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bisection.m

📁 C++编译指导
💻 M
📖 第 1 页 / 共 2 页
字号:
function mesh= bisection(mesh,eta,res,osc,theta1,theta2)% BISECTION	refines the triangulation using newest vertex bisection%% USAGE%    mesh = bisection(mesh,eta,theta)%% INPUT %     mesh:  current mesh%    theta1,theta2:  parameter in (0,1). %            We mark minimal number of triangles M such that%              \sum_{T \in M} \eta_T > \theta*\sum\eta_T%% OUTPUT%     mesh:  new mesh after refinement%% REFERENCE% 	Long Chen,%   Short bisection implementation in MATLAB%   Research Notes, 2006 %--------------------------------------------------------------------------% Construct data structure%--------------------------------------------------------------------------mesh.elem = label(mesh.node,mesh.elem);edge = [mesh.elem(:,[1,2]); mesh.elem(:,[1,3]); mesh.elem(:,[2,3])];edge = unique(sort(edge,2),'rows');N = size(mesh.node,1); NT = size(mesh.elem,1); NE = size(edge,1);dualEdge = sparse(mesh.elem(:,[1,2,3]),mesh.elem(:,[2,3,1]),[1:NT,1:NT,1:NT]);d2p = sparse(edge(:,[1,2]),edge(:,[2,1]),[1:NE,1:NE]);% Detailed explanation can be founded at%   Manual --> Data Structure -->  Auxlliary data structure %--------------------------------------------------------------------------% Meomery management for node arrary%--------------------------------------------------------------------------recycle = find(mesh.type==0); last = length(recycle);% Coarsening can create empty spaces in the node array. We collect those% scattered spaces in recycle arrary and 'last' will point out the last% empty node index. % mesh.type array is used to distinguish the type of nodes:%   0: empty nodes (deleted by coarsening);%   1: nodes in the initial triangulation or nodes from regular refinement;%   2: new added nodes due to refinement.%--------------------------------------------------------------------------% Mark triangles according to the error indicator%--------------------------------------------------------------------------total =max(eta); [temp,ix] = sort(-eta); % sort in descent ordermarker1 = zeros(NT,1);marker2 = zeros(NE,1);marker3= zeros(NT,1);for t = 1:NT   index = 1; ct = ix(t);i=0;     if (eta(ct) <(theta1^2)*total), break; end % err on marked elem big enough    if(marker1(ct)==0)       marker1(ct)=ct;       while (index==1)           base = d2p(mesh.elem(ct,2),mesh.elem(ct,3));           if (marker2(base)>0)               index = 0;% base is already marked                % mark the interior node               if (i==0)                   if (last==0), newNode = size(mesh.node,1) + 1; end                   if (last>0),  newNode = recycle(last); last = last-1; end                    marker3(ct) = newNode;                    mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:)...                    + mesh.node(marker2(base),:))/2;                    mesh.type(newNode) = 2; % newNode is added by the refinement                    mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,1))...                       +mesh.solu(marker2(base)))/2;                    i=i+1;               end            end          if (marker2(base)==0)            if (last==0), newNode = size(mesh.node,1) + 1; end            if (last>0),  newNode = recycle(last); last = last-1; end            marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode;            % A new node is added to the mesh. Numerical solution at this            % new added node is approximated by linear interpolation.            mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:)...                                    + mesh.node(mesh.elem(ct,3),:) )/2;            mesh.type(newNode) = 2; % newNode is added by the refinement            mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2))...                                   + mesh.solu(mesh.elem(ct,3)) )/2;            % mark the interior node            if (i==0)                if (last==0), newNode = size(mesh.node,1) + 1; end                if (last>0),  newNode = recycle(last); last = last-1; end                marker3(ct) = newNode;                mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:) ...                +mesh.node( marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3))),:))/2;                mesh.type(newNode) = 2; % newNode is added by the refinement                mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2))  ...                      + mesh.solu(marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)))))/2;               i=i+1;            end                                                       % Find the element which shares the base edge of the current            % element. If it is 0, it means the base of the current element            % is on the boundary.            ct = dualEdge(mesh.elem(ct,3),mesh.elem(ct,2));            if (ct==0), index=0; end % base is on the boundary            % the while will ended if            % 1.  ct==0 means we are on the boundary            % 2.  base(ct) is already marked           end      end                                                   ct=ix(t);index=1;         base = d2p(mesh.elem(ct,3),mesh.elem(ct,1));        if (marker2(base)>0), index = 0;end % base is already marked        if (marker2(base)==0)            if (last==0), newNode = size(mesh.node,1) + 1; end            if (last>0),  newNode = recycle(last); last = last-1; end            marker2( d2p(mesh.elem(ct,3),mesh.elem(ct,1)) ) = newNode;            % A new node is added to the mesh. Numerical solution at this            % new added node is approximated by linear interpolation.            mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,3),:)...                                     +mesh.node(mesh.elem(ct,1),:) )/2;            mesh.type(newNode) = 2; % newNode is added by the refinement            mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,3))...                                  + mesh.solu(mesh.elem(ct,1)) )/2;        end           ct = dualEdge(mesh.elem(ct,1),mesh.elem(ct,3));        while(index==1)            if (ct==0),index=0;end            if (ct>0)              base = d2p(mesh.elem(ct,2),mesh.elem(ct,3));              if (marker2(base)>0), index = 0; end% base is already marked              if (marker2(base)==0)                  if (last==0), newNode = size(mesh.node,1) + 1; end                  if (last>0),  newNode = recycle(last); last = last-1; end                  marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode;                  % A new node is added to the mesh. Numerical solution at this                  % new added node is approximated by linear interpolation.                 mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:)...                                    + mesh.node(mesh.elem(ct,3),:) )/2;                 mesh.type(newNode) = 2; % newNode is added by the refinement                 mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2))...                                       + mesh.solu(mesh.elem(ct,3)) )/2;                 % Find the element which shares the base edge of the current                 % element. If it is 0, it means the base of the current element                 % is on the boundary.                 ct = dualEdge(mesh.elem(ct,3),mesh.elem(ct,2));               end % base is on the boundary            % the while will ended if            % 1.  ct==0 means we are on the boundary            % 2.  base(ct) is already marked           end        end                   ct=ix(t);index=1;         base = d2p(mesh.elem(ct,1),mesh.elem(ct,2));        if (marker2(base)>0), index = 0;end % base is already marked        if (marker2(base)==0)            if (last==0), newNode = size(mesh.node,1) + 1; end            if (last>0),  newNode = recycle(last); last = last-1; end            marker2( d2p(mesh.elem(ct,1),mesh.elem(ct,2)) ) = newNode;            % A new node is added to the mesh. Numerical solution at this            % new added node is approximated by linear interpolation.            mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:)...                                     +mesh.node(mesh.elem(ct,2),:) )/2;            mesh.type(newNode) = 2; % newNode is added by the refinement            mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,3))...                                   + mesh.solu(mesh.elem(ct,1)) )/2;        end           ct = dualEdge(mesh.elem(ct,2),mesh.elem(ct,1));        while(index==1)            if (ct==0),index=0;end            if (ct>0)              base = d2p(mesh.elem(ct,2),mesh.elem(ct,3));              if (marker2(base)>0), index = 0; end% base is already marked              if (marker2(base)==0)                  if (last==0), newNode = size(mesh.node,1) + 1; end                  if (last>0),  newNode = recycle(last); last = last-1; end                  marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode;                  % A new node is added to the mesh. Numerical solution at this                  % new added node is approximated by linear interpolation.                 mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:)  ...                                    + mesh.node(mesh.elem(ct,3),:) )/2;                 mesh.type(newNode) = 2; % newNode is added by the refinement                 mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2))...                                      +  mesh.solu(mesh.elem(ct,3)) )/2;                 % Find the element which shares the base edge of the current                 % element. If it is 0, it means the base of the current element                 % is on the boundary.                 ct = dualEdge(mesh.elem(ct,3),mesh.elem(ct,2));                end % base is on the boundary            % the while will ended if            % 1.  ct==0 means we are on the boundary            % 2.  base(ct) is already marked           end        end     end end % end of for loop on all elements    total = max(res); [temp,ix] = sort(-res);for t = 1:NT     index = 1; ct = ix(t);i=0;    if ( eta(ct)<(theta2^2)*total), break; end % err on marked elem big enough    if(marker1(ct)==0)       marker1(ct)=ct;               while (index==1)           base = d2p(mesh.elem(ct,2),mesh.elem(ct,3));           if (marker2(base)>0)               index = 0; % base is already marked               if (i==0)                   if (last==0), newNode = size(mesh.node,1) + 1; end                   if (last>0),  newNode = recycle(last); last = last-1; end                    marker3(ct) = newNode;                    mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:)...                    +  mesh.node(marker2(base),:))/2;                    mesh.type(newNode) = 2; % newNode is added by the refinement                    mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,1))...                        + mesh.solu(marker2(base)))/2;                    i=i+1;              end              else            if (last==0), newNode = size(mesh.node,1) + 1; end            if (last>0),  newNode = recycle(last); last = last-1; end            marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode;            % A new node is added to the mesh. Numerical solution at this            % new added node is approximated by linear interpolation.            mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:) + ...                                     mesh.node(mesh.elem(ct,3),:) )/2;            mesh.type(newNode) = 2; % newNode is added by the refinement            mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2)) + ...                                   mesh.solu(mesh.elem(ct,3)) )/2;       %mark interior node             if (i==0)                if (last==0), newNode = size(mesh.node,1) + 1; end                if (last>0),  newNode = recycle(last); last = last-1; end                marker3(ct) = newNode;                mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,1),:) + ...              mesh.node( marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3))),:))/2;                mesh.type(newNode) = 2;                mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,2)) + ...                       mesh.solu(marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3))),:))/2;               i=i+1;             end                                     ct = dualEdge(mesh.elem(ct,3),mesh.elem(ct,2));            if (ct==0), index=0; end % base is on the boundary            % the while will ended if            % 1.  ct==0 means we are on the boundary            % 2.  base(ct) is already marked           end        end                               ct=ix(t);index=1;           base = d2p(mesh.elem(ct,3),mesh.elem(ct,1));        if (marker2(base)>0), index = 0; % base is already marked          else            if (last==0), newNode = size(mesh.node,1) + 1; end            if (last>0),  newNode = recycle(last); last = last-1; end            marker2( d2p(mesh.elem(ct,3),mesh.elem(ct,1)) ) = newNode;            % A new node is added to the mesh. Numerical solution at this            % new added node is approximated by linear interpolation.            mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,3),:) + ...                                     mesh.node(mesh.elem(ct,1),:) )/2;            mesh.type(newNode) = 2; % newNode is added by the refinement            mesh.solu(newNode) = ( mesh.solu(mesh.elem(ct,3)) + ...                                   mesh.solu(mesh.elem(ct,1)) )/2;        end           ct = dualEdge(mesh.elem(ct,1),mesh.elem(ct,3));        while(index==1)            if (ct==0)               index=0;           else              base = d2p(mesh.elem(ct,2),mesh.elem(ct,3));              if (marker2(base)>0), index = 0; % base is already marked              else                  if (last==0), newNode = size(mesh.node,1) + 1; end                  if (last>0),  newNode = recycle(last); last = last-1; end                  marker2( d2p(mesh.elem(ct,2),mesh.elem(ct,3)) ) = newNode;                  % A new node is added to the mesh. Numerical solution at this                  % new added node is approximated by linear interpolation.                 mesh.node(newNode,:) = ( mesh.node(mesh.elem(ct,2),:) + ...                                     mesh.node(mesh.elem(ct,3),:) )/2;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -