⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 c080100.htm

📁 计算机图形学的课件,让你学习不在无所适从.想学的就看看吧,回有用的.
💻 HTM
📖 第 1 页 / 共 3 页
字号:
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>自由曲线和曲面的表示方法</title>
</head>

<body background="../master03_background.JPG" bgproperties="fixed">

<div align="center">
  <center>

<table border="0" width="507" height="1">
  <tr>
    <td width="303" align="center" height="1">
  </center>
    <p:colorscheme
 colors="#FFFFFF,#000000,#808080,#000000,#00CC99,#3333CC,#CCCCFF,#B2B2B2"/>
    <div v:shape="_x0000_s2050" class="O" style="width: 344; height: 124">
      <font color="#FFFF00" size="5"><span style="mso-fareast-font-family: 宋体; mso-hansi-font-family: Times New Roman; layout-flow: vertical"><b>八 
      <a name="#自由曲线和曲面的表示方法">自由曲线和曲面的表示方法</a></b></span></font>
      <ul>
        <li>
          <p align="left"><span style="mso-fareast-font-family: 宋体; mso-hansi-font-family: Times New Roman; layout-flow: vertical"><font size="4" color="#FFFF00"><b>Bezier</b></font></span></li>
        <li>
          <p align="left"><span style="mso-fareast-font-family: 宋体; mso-hansi-font-family: Times New Roman; layout-flow: vertical"><font size="4"><b>B_Spline</b></font></span></li>
        <li>
          <p align="left"><font size="4"><b>Hermite,Coons</b></font></li>
      </ul>
    </div>
    </td>
  <center>

    <td width="214" align="center" valign="middle" height="1">
    <p align="center"><img border="0" src="slide0002_image002.gif" width="172" height="160">
    </td>
  </tr>
  </center>
<tr>
    <td width="503" align="center" colspan="2" height="51">
  <p:colorscheme
 colors="#FFFFFF,#000000,#808080,#000000,#00CC99,#3333CC,#CCCCFF,#B2B2B2"/>
  <div v:shape="_x0000_s2050" class="O">
    <p align="left"><b><font color="#FFFF00"><a name="#概念">1 概念</a></font></b></p> 
    <p align="left"><b>&nbsp; &nbsp;  
    能够用方程式描述的曲线,如二次曲线、曲面等。计算机可以用方程求出曲线、曲面上所有的点。而不能用方程式描述的曲线、曲面,计算机如何生成呢?</b></p>
    <p align="left"><b>&nbsp;&nbsp;&nbsp;  
    曲线、曲面拟合方法:用一组离散的控制点近似地拟合曲线、曲面。</b></p>
    <ul>
      <li>
        <p align="left"><b>插值方法:曲线、曲面通过控制点。</b></li>
      <li>
        <p align="left"><b>逼近方法:在某种准则下,曲线、曲面“接近”控制点。</b></li>
    </ul>
    <p align="left"><b>&nbsp;&nbsp;&nbsp;  
    <a name="#曲线曲面方程">平面上的曲线(显式)方程:y=f(x)</a></b></p>
    <p align="left"><b>&nbsp;&nbsp;&nbsp;  
    空间上的曲线(显式)方程:z=f(x,y)</b></p>
    <p align="left"><b>&nbsp;&nbsp;&nbsp;  
    空间上的曲线段(参数)方程:</b></p>
    <p align="left"><b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; x=X(t) y=Y(t) z=Z(t)&nbsp;&nbsp;&nbsp;  
    <font size="3">0<span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≦t≦1</span></font></b></p>
    <p align="left"><b><font size="3"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">&nbsp;&nbsp;&nbsp;  
    </span></font>空间上的曲面片(参数)方程:</b></p>
    <p align="left"><b>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; x=X(u,w) y=Y(u,w) z=Z(u,w)&nbsp;&nbsp;&nbsp; 
    <font size="3">0<span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≦u≦1&nbsp; 
    </span>0<span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≦w≦1</span></font></b></p>
    <p align="left"><b><font color="#FFFF00" size="3"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">&nbsp;</span></font><font size="3"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"><font color="#FFFF00"> 
    样条函数</font>:按照一定光滑性要求连接起来的分段多项式。</span></font></b></p>
    <p align="left"><font size="3"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"><b>&nbsp; 
    <font color="#FFFF00">三次样条函数</font>:就是分段多项式为三次多项式。</b></span></font></p>
    <p align="left"><font size="3"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"><b>&nbsp; 
    研究样条就是: </b></span></font></p>
    <ul>
      <li>
        <p align="left"><font size="3"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"><b>确定一种划分(分段)</b></span></font></li>
      <li>
        <p align="left"><font size="3"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"><b>确定每个分段上的三次多项式</b></span></font></li>
      <li>
        <p align="left"><font size="3"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"><b>确定段与段之间的光滑连接关系</b></span></font></li>
    </ul>
    <p align="left"><font size="3" color="#FFFF00"><span style="mso-bidi-font-size: 12.0pt; font-family: 宋体; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"><b>2 
   <a name="#三次Bezier多项式">三次Bezier多项式</a> </b></span></font></p>
    <p align="center"><b><span lang="EN-US" style="font-size: 10.5pt; mso-bidi-font-size: 12.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA; mso-text-raise: -14.0pt"><!--[if gte vml 1]><v:shapetype
 id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t"
 path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
 <v:stroke joinstyle="miter"/>
 <v:formulas>
  <v:f eqn="if lineDrawn pixelLineWidth 0"/>
  <v:f eqn="sum @0 1 0"/>
  <v:f eqn="sum 0 0 @1"/>
  <v:f eqn="prod @2 1 2"/>
  <v:f eqn="prod @3 21600 pixelWidth"/>
  <v:f eqn="prod @3 21600 pixelHeight"/>
  <v:f eqn="sum @0 0 1"/>
  <v:f eqn="prod @6 1 2"/>
  <v:f eqn="prod @7 21600 pixelWidth"/>
  <v:f eqn="sum @8 21600 0"/>
  <v:f eqn="prod @7 21600 pixelHeight"/>
  <v:f eqn="sum @10 21600 0"/>
 </v:formulas>
 <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
 <o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:120pt;
 height:33.75pt' o:ole="">
 <v:imagedata src="file:///D:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msoclip1/01/clip_image001.wmz"
  o:title=""/>
</v:shape><![endif]-->
    <!--[if gte vml 1]><v:shapetype
 id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t"
 path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
 <v:stroke joinstyle="miter"/>
 <v:formulas>
  <v:f eqn="if lineDrawn pixelLineWidth 0"/>
  <v:f eqn="sum @0 1 0"/>
  <v:f eqn="sum 0 0 @1"/>
  <v:f eqn="prod @2 1 2"/>
  <v:f eqn="prod @3 21600 pixelWidth"/>
  <v:f eqn="prod @3 21600 pixelHeight"/>
  <v:f eqn="sum @0 0 1"/>
  <v:f eqn="prod @6 1 2"/>
  <v:f eqn="prod @7 21600 pixelWidth"/>
  <v:f eqn="sum @8 21600 0"/>
  <v:f eqn="prod @7 21600 pixelHeight"/>
  <v:f eqn="sum @10 21600 0"/>
 </v:formulas>
 <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
 <o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:167.25pt;
 height:33.75pt' o:ole="">
 <v:imagedata src="file:///D:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msoclip1/01/clip_image001.wmz"
  o:title=""/>
</v:shape><![endif]-->
    <img src="C080101.gif" v:shapes="_x0000_i1025" width="223" height="45"></span><span style="mso-text-raise: -14.0pt; mso-bidi-font-size: 12.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA" lang="EN-US"><font size="3"><!--[if gte mso 9]><xml>
 <o:OLEObject Type="Embed" ProgID="Equation.3" ShapeID="_x0000_i1025"
  DrawAspect="Content" ObjectID="_1074236912">
 </o:OLEObject>
</xml><![endif]-->
    </font></span></b></p>
    <p align="left"><span style="mso-text-raise: -14.0pt; mso-bidi-font-size: 12.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA" lang="EN-US"><font size="3"><b>其中Pi(i=0,1,2,3)为控制点,</b></font></span></p>
    <p align="center"><span lang="EN-US" style="font-size:10.5pt;mso-bidi-font-size:
12.0pt;font-family:&quot;Times New Roman&quot;;mso-fareast-font-family:宋体;mso-font-kerning:
1.0pt;mso-ansi-language:EN-US;mso-fareast-language:ZH-CN;mso-bidi-language:
AR-SA"><b><span style="mso-text-raise:-6.0pt"><!--[if gte vml 1]><v:shapetype
 id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t"
 path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
 <v:stroke joinstyle="miter"/>
 <v:formulas>
  <v:f eqn="if lineDrawn pixelLineWidth 0"/>
  <v:f eqn="sum @0 1 0"/>
  <v:f eqn="sum 0 0 @1"/>
  <v:f eqn="prod @2 1 2"/>
  <v:f eqn="prod @3 21600 pixelWidth"/>
  <v:f eqn="prod @3 21600 pixelHeight"/>
  <v:f eqn="sum @0 0 1"/>
  <v:f eqn="prod @6 1 2"/>
  <v:f eqn="prod @7 21600 pixelWidth"/>
  <v:f eqn="sum @8 21600 0"/>
  <v:f eqn="prod @7 21600 pixelHeight"/>
  <v:f eqn="sum @10 21600 0"/>
 </v:formulas>
 <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
 <o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:17.25pt;
 height:18.75pt' o:ole="">
 <v:imagedata src="file:///D:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msoclip1/01/clip_image001.wmz"
  o:title=""/>
</v:shape><![endif]-->
    </span><span style="mso-text-raise:-14.0pt"><!--[if gte vml 1]><v:shapetype
 id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t"
 path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
 <v:stroke joinstyle="miter"/>
 <v:formulas>
  <v:f eqn="if lineDrawn pixelLineWidth 0"/>
  <v:f eqn="sum @0 1 0"/>
  <v:f eqn="sum 0 0 @1"/>
  <v:f eqn="prod @2 1 2"/>
  <v:f eqn="prod @3 21600 pixelWidth"/>
  <v:f eqn="prod @3 21600 pixelHeight"/>
  <v:f eqn="sum @0 0 1"/>
  <v:f eqn="prod @6 1 2"/>
  <v:f eqn="prod @7 21600 pixelWidth"/>
  <v:f eqn="sum @8 21600 0"/>
  <v:f eqn="prod @7 21600 pixelHeight"/>
  <v:f eqn="sum @10 21600 0"/>
 </v:formulas>
 <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
 <o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:182.25pt;
 height:33pt' o:ole="">
 <v:imagedata src="file:///D:/DOCUME~1/ADMINI~1/LOCALS~1/Temp/msoclip1/01/clip_image001.wmz"
  o:title=""/>
</v:shape><![endif]-->
    <img src="C080102.gif" v:shapes="_x0000_i1025" width="243" height="44"></span></b></span></p>
    <p align="left"><b>三次Bezier曲线是用三次Bezier多项式表示段内的曲线P(t)。</b></p>
    <p align="left"><span style="mso-text-raise: -7.0pt; font-size: 10.5pt; mso-bidi-font-size: 12.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA" lang="EN-US"><b><!--[if gte vml 1]><v:shapetype
 id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t"
 path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -