⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svd.mht

📁 SVD的有关资料
💻 MHT
📖 第 1 页 / 共 5 页
字号:
width=3D174=20
      align=3DABSCENTER> and see that&nbsp; <BR>&nbsp;=20
      <UL>
        <LI>no matter what&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr76.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr76.gif" =
width=3D11=20
        align=3DABSCENTER> you choose&nbsp;<IMG height=3D17=20
        alt=3D[Graphics:svdgr77.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr77.gif" =
width=3D32=20
        align=3DABSCENTER> is a unit vector in&nbsp;<IMG height=3D17=20
        alt=3D[Graphics:svdgr78.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr78.gif" =
width=3D17=20
        align=3DABSCENTER>&nbsp;=20
        <LI><IMG height=3D18 alt=3D[Graphics:svdgr79.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr79.gif" =
width=3D201=20
        align=3DABSCENTER>.&nbsp; </LI></UL>&nbsp;=20
      <P>Since&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr80.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr80.gif" =
width=3D17=20
      align=3DABSCENTER> is a unit vector in&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr81.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr81.gif" =
width=3D17=20
      align=3DABSCENTER> maximizing&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr82.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr82.gif" =
width=3D49=20
      align=3DABSCENTER> and&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr83.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr83.gif" =
width=3D32=20
      align=3DABSCENTER> is in&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr84.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr84.gif" =
width=3D17=20
      align=3DABSCENTER> for all&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr85.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr85.gif" =
width=3D11=20
      align=3DABSCENTER>, you know that&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr86.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr86.gif" =
width=3D112=20
      align=3DABSCENTER> has a maximum at&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr87.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr87.gif" =
width=3D32=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp;=20
      <P>This tells you&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr88.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr88.gif" =
width=3D60=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp;=20
      <P>Now compute:&nbsp; <BR><IMG height=3D17 =
alt=3D[Graphics:svdgr89.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr89.gif" =
width=3D112=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp;=20
      <P><IMG height=3D17 alt=3D[Graphics:svdgr90.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr90.gif" =
width=3D106=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp;=20
      <P><IMG height=3D18 alt=3D[Graphics:svdgr91.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr91.gif" =
width=3D333=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp;=20
      <P><IMG height=3D38 alt=3D[Graphics:svdgr92.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr92.gif" =
width=3D341=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp; <BR>&nbsp;=20
      <P>When you remember&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr93.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr93.gif" =
width=3D75=20
      align=3DABSCENTER>,&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr94.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr94.gif" =
width=3D75=20
      align=3DABSCENTER>, and&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr95.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr95.gif" =
width=3D75=20
      align=3DABSCENTER> are just numbers, you understand that its =
nothing more=20
      than tedious to compute:&nbsp;=20
      <P><IMG height=3D38 alt=3D[Graphics:svdgr96.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr96.gif" =
width=3D417=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp;=20
      <P>Plugging in&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr97.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr97.gif" =
width=3D32=20
      align=3DABSCENTER> gives you&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr98.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr98.gif" =
width=3D126=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp;=20
      <P>But you already know that&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr99.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr99.gif" =
width=3D60=20
      align=3DABSCENTER>, so after canceling the&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr100.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr100.gif" =
width=3D11=20
      align=3DABSCENTER> you get&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr101.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr101.gif" =
width=3D85=20
      align=3DABSCENTER> which is just what you wanted.&nbsp;=20
      <P>
      <HR width=3D"100%">

      <H3><FONT color=3D#3333ff>Proof 3: Based on the spectral=20
      theorem</FONT></H3>This proof is slick IF YOU'VE ALREADY SEEN THE =
SPECTRAL=20
      THEOREM.&nbsp;=20
      <P>If you haven't seen the spectral theorem, then skip this =
proof.&nbsp;=20
      <P>Given&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr102.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr102.gif" =
width=3D72=20
      align=3DABSCENTER> and an orthonormal basis&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr103.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr103.gif" =
width=3D89=20
      align=3DABSCENTER> of&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr104.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr104.gif" =
width=3D19=20
      align=3DABSCENTER> ,&nbsp;=20
      <P><IMG height=3D19 alt=3D[Graphics:svdgr105.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr105.gif" =
width=3D125=20
      align=3DABSCENTER>&nbsp;=20
      <P>iff&nbsp;<IMG height=3D19 alt=3D[Graphics:svdgr106.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr106.gif" =
width=3D136=20
      align=3DABSCENTER>&nbsp;=20
      <P>iff&nbsp;<IMG height=3D19 alt=3D[Graphics:svdgr107.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr107.gif" =
width=3D78=20
      align=3DABSCENTER>&nbsp;=20
      <P>iff&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr108.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr108.gif" =
width=3D89=20
      align=3DABSCENTER> are all eigenvectors of <IMG height=3D17=20
      alt=3D[Graphics:svdgr109.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr109.gif" =
width=3D26=20
      align=3DABSCENTER>.&nbsp;=20
      <P><B><FONT color=3D#3333ff>Conclusion:</FONT></B> The desired =
basis is=20
      guaranteed by spectral theorem since&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr109.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr109.gif" =
width=3D26=20
      align=3DABSCENTER> is symmetric.&nbsp;=20
      <P>
      <HR width=3D"100%">

      <H3><A name=3D"Theorem SVD"></A><FONT color=3D#ff0000>Theorem: =
Every matrix=20
      has a singular value decomposition.&nbsp;</FONT></H3>The theorem =
above=20
      almost gives you the SVD for any matrix.&nbsp;=20
      <P>The only problem is that although the columns of the "hanger" =
matrix=20
      are pairwise perpendicular, they might not form a basis =
for&nbsp;<IMG=20
      height=3D17 alt=3D[Graphics:svdgr110.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr110.gif" =
width=3D21=20
      align=3DABSCENTER>.&nbsp;=20
      <P>For example, suppose for a 5x4 matrix&nbsp;<IMG height=3D18=20
      alt=3D[Graphics:svdgr111.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr111.gif" =
width=3D66=20
      align=3DABSCENTER> the procedure outlined above gives you:&nbsp;=20
      <CENTER><IMG height=3D75 alt=3D[Graphics:svdgr112.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr112.gif" =
width=3D237=20
      align=3DABSCENTER>.&nbsp;</CENTER>&nbsp;=20
      <P>To complete the decomposition, let&nbsp;<IMG height=3D20=20
      alt=3D[Graphics:svdgr113.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr113.gif" =
width=3D78=20
      align=3DABSCENTER> be an orthonormal basis for the three =
dimensional=20
      subspace of&nbsp;<IMG height=3D18 alt=3D[Graphics:svdgr114.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr114.gif" =
width=3D19=20
      align=3DABSCENTER> perpendicular to&nbsp;<IMG height=3D20=20
      alt=3D[Graphics:svdgr115.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr115.gif" =
width=3D69=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp;=20
      <P>Then write&nbsp;=20
      <CENTER><IMG height=3D75 alt=3D[Graphics:svdgr116.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr116.gif" =
width=3D237=20
      align=3DABSCENTER>&nbsp;</CENTER>
      <CENTER><IMG height=3D76 alt=3D[Graphics:svdgr117.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr117.gif" =
width=3D271=20
      align=3DABSCENTER>&nbsp;</CENTER>
      <CENTER>&nbsp;</CENTER>(1) The two sides agree on the =
basis&nbsp;<IMG=20
      height=3D17 alt=3D[Graphics:svdgr118.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr118.gif" =
width=3D102=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp; <BR>&nbsp;=20
      <P>This, finally, is a singular value decomposition for=20
      <I>A.&nbsp;</I>&nbsp;=20
      <P>
      <HR width=3D"100%">
      <BR>&nbsp;=20
      <P><FONT color=3D#3333ff><B>Comments</B>:&nbsp;</FONT>&nbsp; =
<BR>&nbsp;=20
      <UL>
        <LI>The diagonal entries of the stretcher matrix are called the=20
        "singular values of <I>A</I>".&nbsp; <BR>&nbsp;=20
        <LI>An extra row of zeros has been added to the stretcher matrix =
to=20
        produce the dimensions required for the multiplication. If =
<I>A</I> is m=20
        x n with&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr119.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr119.gif" =
width=3D34=20
        align=3DABSCENTER>, then rows will be deleted.&nbsp;=20
        <P>In either case, the dimensions of the stretcher matrix will =
always=20
        match the dimensions of <I>A</I>.&nbsp; <BR>&nbsp; </P>
        <LI>The decomposition shows that the action of every matrix can =
be=20
        described as a rotation followed by a stretch followed by =
another=20
        rotation.&nbsp; <BR>&nbsp;=20
        <LI>The proofs above are meant to show that every matrix has an=20
        SVD.&nbsp; You can compute SVD's for mx2 matrices by hand, but =
you=20
        should use a machine to compute SVD's for bigger matrices.=20
      </LI></UL>&nbsp;=20
      <P>
      <HR width=3D"100%">

      <H2><A name=3DExercises></A><FONT =
color=3D#ff0000>Exercises</FONT></H2>1.=20
      Above, you saw that if A is a&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr120.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr120.gif" =
width=3D23=20
      align=3DABSCENTER> matrix&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr121.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr121.gif" =
width=3D66=20

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -