⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svd.mht

📁 SVD的有关资料
💻 MHT
📖 第 1 页 / 共 5 页
字号:
From: <由 Microsoft Internet Explorer 5 保存>
Subject: SVD
Date: Wed, 28 Nov 2007 09:57:00 +0800
MIME-Version: 1.0
Content-Type: multipart/related;
	type="text/html";
	boundary="----=_NextPart_000_0000_01C831A5.051E8430"
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.3198

This is a multi-part message in MIME format.

------=_NextPart_000_0000_01C831A5.051E8430
Content-Type: text/html;
	charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
Content-Location: http://www.uwlax.edu/faculty/will/svd/svd/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>SVD</TITLE>
<META http-equiv=3DContent-Type content=3D"text/html; =
charset=3Diso-8859-1">
<META content=3D"Introduction to Singular Value Decomposition" =
name=3Ddescription>
<META content=3D"singular value decomposition, svd, introduction to svd" =

name=3Dkeywords>
<META content=3D"MSHTML 6.00.2900.3199" name=3DGENERATOR></HEAD>
<BODY vLink=3D#666666 aLink=3D#999999 link=3D#000066 bgColor=3D#ffffff =
leftMargin=3D8=20
topMargin=3D8>&nbsp;=20
<TABLE cellSpacing=3D0 cellPadding=3D5 border=3D1>
  <TBODY>
  <TR>
    <TD vAlign=3Dtop width=3D95 bgColor=3D#99ff99 rowSpan=3D2>
      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/index.html">Introduction</A=
>&nbsp;=20

      <HR width=3D"100%">
      <A =
href=3D"http://www.uwlax.edu/faculty/will/svd/action/index.html">Matrix=20
      Action</A>&nbsp;=20
      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/perpframes/index.html">Perp=
frames,=20
      Aligners and Hangers</A>&nbsp;=20
      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/stretchers/index.html">Stre=
tchers</A>&nbsp;=20

      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/coordinates/index.html">Coo=
rdinates</A>&nbsp;=20

      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/projections/index.html">Pro=
jections</A>&nbsp;=20

      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/svd/index.html">SVD</A>&nbs=
p;=20
      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/subspaces/index.html">Matri=
x=20
      Subspaces&nbsp;</A>&nbsp;=20
      <HR width=3D"100%">
      <A =
href=3D"http://www.uwlax.edu/faculty/will/svd/systems/index.html">Linear =

      Systems, Pseudo-Inverse</A>&nbsp;=20
      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/condition/index.html">Condi=
tion=20
      Number</A>&nbsp;=20
      <HR width=3D"100%">
      <A =
href=3D"http://www.uwlax.edu/faculty/will/svd/norm/index.html">Matrix=20
      Norm, Rank One</A>&nbsp;=20
      <HR width=3D"100%">
      <A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/compression/index.html">Dat=
a=20
      Compression</A>&nbsp;=20
      <HR width=3D"100%">
      <A =
href=3D"http://www.uwlax.edu/faculty/will/svd/noise/index.html">Noise=20
      Filtering</A>&nbsp;=20
      <HR width=3D"100%">

      <H6>Todd Will<BR>UW-La Crosse</H6></TD>
    <TD vAlign=3Dcenter align=3Dmiddle width=3D10 =
bgColor=3D#cccccc>&nbsp;<A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/svd/index.html#Two-thirds">=
Two-thirds=20
      Theorem&nbsp;=20
      <HR width=3D"100%">
      </A><A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/svd/index.html#Theorem: If =
A is an m x n  matrix, then there is">Good=20
      Basis Theorem</A></TD>
    <TD vAlign=3Dtop align=3Dmiddle bgColor=3D#ccffff>
      <CENTER>
      <H1>SVD</H1></CENTER></TD>
    <TD vAlign=3Dcenter align=3Dmiddle width=3D10 bgColor=3D#cccccc><A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/svd/index.html#Theorem =
SVD">SVD&nbsp;=20

      <HR width=3D"100%">
      </A><A=20
      =
href=3D"http://www.uwlax.edu/faculty/will/svd/svd/index.html#Exercises">E=
xercises</A></TD></TR>
  <TR>
    <TD bgColor=3D#ffffff colSpan=3D3>
      <H2><FONT color=3D#ff0000>Singular Value =
Decomposition</FONT></H2>The=20
      singular value decomposition for a matrix A writes A as a product=20
      (hanger)(stretcher)(aligner).&nbsp; <BR>&nbsp;=20
      <P>It's an amazing and useful fact that every m x n matrix has a =
singular=20
      value decomposition.&nbsp;=20
      <P>The following theorem goes two-thirds of the way to proving =
this=20
      fact:&nbsp;=20
      <HR width=3D"100%">

      <H2><A name=3DTwo-thirds></A><FONT color=3D#ff0000>Two-thirds=20
      Theorem</FONT></H2>For an&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr1.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr1.gif" =
width=3D31=20
      align=3DABSCENTER> matrix&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr2.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr2.gif" =
width=3D72=20
      align=3DABSCENTER> and any orthonormal basis&nbsp;<IMG height=3D17 =

      alt=3D[Graphics:svdgr3.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr3.gif" =
width=3D91=20
      align=3DABSCENTER> of&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr4.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr4.gif" =
width=3D19=20
      align=3DABSCENTER>,&nbsp;=20
      <P>define&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr5.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr5.gif" =
width=3D61=20
      align=3DABSCENTER>&nbsp;=20
      <P>and&nbsp;=20
      <P><IMG height=3D49 alt=3D[Graphics:svdgr6.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr6.gif" =
width=3D128=20
      align=3DABSCENTER>.&nbsp;=20
      <P>Then&nbsp;<IMG height=3D77 alt=3D[Graphics:svdgr7.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr7.gif" =
width=3D240=20
      align=3DABSCENTER>.&nbsp;=20
      <P><B><FONT color=3D#3333ff>Proof</FONT>:</B> Using first the row =
way and=20
      then the column way to multiply a matrix times a point, you see =
that the=20
      right hand side of the equation sends&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr8.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr8.gif" =
width=3D15=20
      align=3DABSCENTER> to&nbsp;<IMG height=3D35 =
alt=3D[Graphics:svdgr9.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr9.gif" =
width=3D132=20
      align=3DABSCENTER>.&nbsp;=20
      <P>Thus the two sides of the equation agree on the basis&nbsp;<IMG =

      height=3D17 alt=3D[Graphics:svdgr10.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr10.gif" =
width=3D89=20
      align=3DABSCENTER> and so must be equal.&nbsp;=20
      <P>
      <HR width=3D"100%">

      <P>The two-thirds theorem gets you two-thirds of the way to the =
SVD.&nbsp;=20

      <P>It says that given any orthonormal basis&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr11.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr11.gif" =
width=3D91=20
      align=3DABSCENTER> of&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr12.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr12.gif" =
width=3D19=20
      align=3DABSCENTER> you can write&nbsp;=20
      <CENTER><IMG height=3D77 alt=3D[Graphics:svdgr13.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr13.gif" =
width=3D240=20
      align=3DABSCENTER>&nbsp;</CENTER>
      <CENTER><IMG height=3D19 alt=3D[Graphics:svdgr14.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr14.gif" =
width=3D207=20
      align=3DABSCENTER>.&nbsp;</CENTER>
      <CENTER>&nbsp;</CENTER>
      <P>So you've got the stretcher and the aligner -- if&nbsp;<IMG =
height=3D19=20
      alt=3D[Graphics:svdgr15.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr15.gif" =
width=3D100=20
      align=3DABSCENTER> were a hanger matrix then this would be a =
Singular Value=20
      Decomposition for <I>A</I>.&nbsp;=20
      <P>For&nbsp;<IMG height=3D19 alt=3D[Graphics:svdgr16.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr16.gif" =
width=3D100=20
      align=3DABSCENTER> to be a hanger matrix requires that the =
columns&nbsp;<IMG=20
      height=3D35 alt=3D[Graphics:svdgr17.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr17.gif" =
width=3D68=20
      align=3DABSCENTER> be pairwise perpendicular.&nbsp;=20
      <P>So one challenge to finding an SVD for <I>A</I> is to find an=20
      orthonormal basis of&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr18.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr18.gif" =
width=3D19=20
      align=3DABSCENTER>,&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr19.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr19.gif" =
width=3D61=20
      align=3DABSCENTER> so that for all&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr20.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr20.gif" =
width=3D28=20
      align=3DABSCENTER>,&nbsp;<IMG height=3D19 =
alt=3D[Graphics:svdgr21.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr21.gif" =
width=3D73=20
      align=3DABSCENTER>.&nbsp;=20
      <P>
      <HR width=3D"100%">

      <H3><A name=3D"Theorem: If A is an m x n  matrix, then there =

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -