📄 bakery1setup.m
字号:
% Experiment set up file for the Matlab Robot Navigation Toolbox % Date: 07.12.03% Author: Kai Arras, CAS-KTH% Description: The 'bakery1'-data set has been recorded in a former% industrial bakery building downtown Stockholm. The robot was a% iRobot ACVR from CAS-KTH with the Hannover 3D sensor. The 2D data% have been extracted with a projection from 3D removing most clutter% which would have been visible using a 2D sensor. In this data set,% the robot revisits its start point three times. The data are a nice% benchmark for line-based SLAM.% Odometry of 'Pluto' (the robot) is pretty poor, so kl = kr = 0.001.% ----- Sensor 1 Model and File Settings ----- %% sensor nameparams.sensor1.name = 'Wheel encoders';% full file name and label to look forparams.sensor1.datafile = 'bakery1.cnt';params.sensor1.label = 'E';% is information in file relative 0: no, 1: yesparams.sensor1.isrelative = 1;% index stringparams.sensor1.indexstr = '1,2,3,4';% robot odometry error modelparams.sensor1.kl = 0.001; % error growth factor for left wheel in [1/m]params.sensor1.kr = 0.001; % error growth factor for right wheel in [1/m]% ----- Sensor 2 Model and File Settings ----- %% sensor nameparams.sensor2.name = 'Hannover 3D LMS200 outdoor';% full file name and label to look forparams.sensor2.datafile = 'bakery1.scn';params.sensor2.label = 'S';% index stringparams.sensor2.indexstr = '1,2,3,end-1:-2:4,end:-2:5';% feature extraction m-fileparams.sensor2.extractionfnc = 'extractlines';% maximal perception radius of sensor in [m]params.sensor2.rs = 32.0;% constant range uncertainty in [m]params.sensor2.stdrho = 0.04;% robot-to-sensor transform expressed in the% robot frame with units [m] [m] [rad]params.sensor2.xs = [0; 0; -6.5*pi/180];% ----- Master Sensor Setting ----- %% define master sensorparams.mastersensid = 2;% ----- Robot Model ----- %% robot nameparams.robot.name = 'Pluto';% robot class nameparams.robot.class = 'robotdd';% robot form type (see help drawrobot)params.robot.formtype = 5;% robot kinematicsparams.robot.b = 0.60; % robot wheelbase in [m]params.robot.rl = 0.25; % left wheel radius in [m]params.robot.rr = 0.25; % right wheel radius in [m]% initial robot start pose and pose covarianceparams.robot.x = zeros(3,1);params.robot.C = 0.0001*eye(3);% ----- Map File for Localization ----- %% define a priori map file, '' for slam experimentsparams.mapfile = '';% ----- Feature Extraction ----- %% size of sliding windowparams.windowsize = 11; % in number of points% threshold on compactnessparams.threshfidel = 0.2;% significance level for line fusionparams.fusealpha = 0.99999; % between 0 and 1% minimal length a segment must have to be acceptedparams.minlength = 1; % in [m]% heuristic compensation factors for raw data correlatinsparams.compensa = 1*pi/180; % in [rad]params.compensr = 0.01; % in [m]% are the scans cyclic?params.cyclic = 1; % 0: non-cyclic or 1: cyclic% ----- Data Association ----- %% significance level for NNSF matchingparams.alpha = 0.95;% ----- Slam ----- %% optional axis vector for global map figure. Useful with infinite linesparams.axisvec = [-6 23 -32 11];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -