📄 macroblock.c
字号:
// update the statistics
img->cod_counter = 0;
skip = FALSE;
}
}
// Skip MBs at the end of this slice for Slice Mode 0 or 1
if(*end_of_slice == TRUE && img->cod_counter && !use_bitstream_backing)
{
se.value1 = img->cod_counter;
se.value2 = 0;
se.type = SE_MBTYPE;
TRACE_SE (se.tracestring, "mb_skip_run");
writeSE_UVLC(&se, dataPart);
rlc_bits=se.len;
currMB->bitcounter[BITS_MB_MODE]+=rlc_bits;
img->cod_counter = 0;
}
}
}
/*!
*****************************************************************************
*
* \brief
* For Slice Mode 2: Checks if one partition of one slice exceeds the
* allowed size
*
* \return
* FALSE if all Partitions of this slice are smaller than the allowed size
* TRUE is at least one Partition exceeds the limit
*
* \par Side effects
* none
*
* \date
* 4 November 2001
*
* \author
* Tobias Oelbaum drehvial@gmx.net
*****************************************************************************/
int slice_too_big(int rlc_bits)
{
Slice *currSlice = img->currentSlice;
DataPartition *dataPart;
Bitstream *currStream;
EncodingEnvironmentPtr eep;
int i;
int size_in_bytes;
//! CAVLC
if (input->symbol_mode == CAVLC)
{
for (i=0; i<currSlice->max_part_nr; i++)
{
dataPart = &(currSlice->partArr[i]);
currStream = dataPart->bitstream;
size_in_bytes = currStream->byte_pos /*- currStream->tmp_byte_pos*/;
if (currStream->bits_to_go < 8)
size_in_bytes++;
if (currStream->bits_to_go < rlc_bits)
size_in_bytes++;
if(size_in_bytes > input->slice_argument)
return TRUE;
}
}
//! CABAC
if (input->symbol_mode ==CABAC)
{
for (i=0; i<currSlice->max_part_nr; i++)
{
dataPart= &(currSlice->partArr[i]);
eep = &(dataPart->ee_cabac);
if( arienco_bits_written(eep) > (input->slice_argument*8))
return TRUE;
}
}
return FALSE;
}
/*!
************************************************************************
* \brief
* Predict Luma block
************************************************************************
*/
void OneComponentLumaPrediction ( imgpel* mpred, //!< array of prediction values (row by row)
int pic_pix_x, //!< motion shifted horizontal coordinate of block
int pic_pix_y, //!< motion shifted vertical coordinate of block
int block_size_x, //!< horizontal block size
int block_size_y, //!< vertical block size
StorablePicture *list //!< reference picture list
)
{
int j;
imgpel *ref_line = UMVLine4X (list->p_curr_img_sub, pic_pix_y, pic_pix_x);
width_pad = list->size_x_pad;
height_pad = list->size_y_pad;
for (j = 0; j < block_size_y; j++)
{
memcpy(mpred, ref_line, block_size_x * sizeof(imgpel));
ref_line += img_padded_size_x;
mpred += block_size_x;
}
}
/*!
************************************************************************
* \brief
* Predict one Luma block
************************************************************************
*/
void LumaPrediction ( Macroblock* currMB,//!< Current Macroblock
int block_x, //!< relative horizontal block coordinate of block
int block_y, //!< relative vertical block coordinate of block
int block_size_x,//!< relative horizontal block coordinate of block
int block_size_y,//!< relative vertical block coordinate of block
int p_dir, //!< prediction direction (0=list0, 1=list1, 2=bipred)
int l0_mode, //!< list0 prediction mode (1-7, 0=DIRECT if l1_mode=0)
int l1_mode, //!< list1 prediction mode (1-7, 0=DIRECT if l0_mode=0)
short l0_ref_idx, //!< reference frame for list0 prediction (-1: Intra4x4 pred. with l0_mode)
short l1_ref_idx //!< reference frame for list1 prediction
)
{
int i, j;
int block_x4 = block_x + block_size_x;
int block_y4 = block_y + block_size_y;
int pic_opix_x = ((img->opix_x + block_x) << 2) + IMG_PAD_SIZE_TIMES4;
int pic_opix_y = ((img->opix_y + block_y) << 2) + IMG_PAD_SIZE_TIMES4;
int bx = block_x >> 2;
int by = block_y >> 2;
imgpel* l0pred = l0_pred;
imgpel* l1pred = l1_pred;
short**** mv_array = img->all_mv[by][bx];
imgpel (*curr_mpr)[16] = img->mpr[0];
int apply_weights = ( (active_pps->weighted_pred_flag && (img->type== P_SLICE || img->type == SP_SLICE)) ||
(active_pps->weighted_bipred_idc && (img->type== B_SLICE)));
if (currMB->bi_pred_me && l0_ref_idx == 0 && l1_ref_idx == 0 && p_dir == 2 && l0_mode==1 && l1_mode==1)
mv_array = currMB->bi_pred_me == 1? img->bipred_mv1[by][bx] : img->bipred_mv2[by][bx];
switch (p_dir)
{
case 0:
OneComponentLumaPrediction (l0_pred, pic_opix_x + mv_array[LIST_0][l0_ref_idx][l0_mode][0], pic_opix_y + mv_array[LIST_0][l0_ref_idx][l0_mode][1], block_size_x, block_size_y, listX[0+currMB->list_offset][l0_ref_idx]);
break;
case 1:
OneComponentLumaPrediction (l1_pred, pic_opix_x + mv_array[LIST_1][l1_ref_idx][l1_mode][0], pic_opix_y + mv_array[LIST_1][l1_ref_idx][l1_mode][1], block_size_x, block_size_y, listX[1+currMB->list_offset][l1_ref_idx]);
break;
case 2:
OneComponentLumaPrediction (l0_pred, pic_opix_x + mv_array[LIST_0][l0_ref_idx][l0_mode][0], pic_opix_y + mv_array[LIST_0][l0_ref_idx][l0_mode][1], block_size_x, block_size_y, listX[0+currMB->list_offset][l0_ref_idx]);
OneComponentLumaPrediction (l1_pred, pic_opix_x + mv_array[LIST_1][l1_ref_idx][l1_mode][0], pic_opix_y + mv_array[LIST_1][l1_ref_idx][l1_mode][1], block_size_x, block_size_y, listX[1+currMB->list_offset][l1_ref_idx]);
break;
default:
break;
}
if (apply_weights)
{
if (p_dir==2)
{
int wbp0 = wbp_weight[0][l0_ref_idx][l1_ref_idx][0];
int wbp1 = wbp_weight[1][l0_ref_idx][l1_ref_idx][0];
int offset = (wp_offset[0][l0_ref_idx][0] + wp_offset[1][l1_ref_idx][0] + 1)>>1;
int wp_round = 2*wp_luma_round;
int weight_denom = luma_log_weight_denom + 1;
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++)
curr_mpr[j][i] = iClip1( img->max_imgpel_value,
((wbp0 * *l0pred++ + wbp1 * *l1pred++ + wp_round) >> (weight_denom)) + offset);
}
else if (p_dir==0)
{
int wp = wp_weight[0][l0_ref_idx][0];
int offset = wp_offset[0][l0_ref_idx][0];
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++)
curr_mpr[j][i] = iClip1( img->max_imgpel_value,
((wp * *l0pred++ + wp_luma_round) >> luma_log_weight_denom) + offset);
}
else // (p_dir==1)
{
int wp = wp_weight[1][l1_ref_idx][0];
int offset = wp_offset[1][l1_ref_idx][0];
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++)
curr_mpr[j][i] = iClip1( img->max_imgpel_value,
((wp * *l1pred++ + wp_luma_round) >> luma_log_weight_denom) + offset );
}
}
else
{
if (p_dir==2)
{
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++)
curr_mpr[j][i] = (*l0pred++ + *l1pred++ + 1) >> 1;
}
else if (p_dir==0)
{
for (j=block_y; j<block_y4; j++)
{
memcpy(&(curr_mpr[j][block_x]), l0pred, block_size_x * sizeof(imgpel));
l0pred += block_size_x;
}
}
else // (p_dir==1)
{
for (j=block_y; j<block_y4; j++)
{
memcpy(&(curr_mpr[j][block_x]), l1pred, block_size_x * sizeof(imgpel));
l1pred += block_size_x;
}
}
}
}
/*!
************************************************************************
* \brief
* Predict one Luma block
************************************************************************
*/
void LumaPredictionBi ( Macroblock* currMB, //!< Current Macroblock
int block_x, //!< relative horizontal block coordinate of 4x4 block
int block_y, //!< relative vertical block coordinate of 4x4 block
int block_size_x, //!< horizontal block size
int block_size_y, //!< vertical block size
int l0_mode, //!< list0 prediction mode (1-7, 0=DIRECT if l1_mode=0)
int l1_mode, //!< list1 prediction mode (1-7, 0=DIRECT if l0_mode=0)
short l0_ref_idx, //!< reference frame for list0 prediction (-1: Intra4x4 pred. with l0_mode)
short l1_ref_idx, //!< reference frame for list1 prediction
int list //!< current list for prediction.
)
{
int i, j;
int block_x4 = block_x + block_size_x;
int block_y4 = block_y + block_size_y;
int pic_opix_x = ((img->opix_x + block_x) << 2) + IMG_PAD_SIZE_TIMES4;
int pic_opix_y = ((img->opix_y + block_y) << 2) + IMG_PAD_SIZE_TIMES4;
int bx = block_x >> 2;
int by = block_y >> 2;
imgpel* l0pred = l0_pred;
imgpel* l1pred = l1_pred;
int apply_weights = ( (active_pps->weighted_pred_flag && (img->type == P_SLICE || img->type == SP_SLICE)) ||
(active_pps->weighted_bipred_idc && (img->type == B_SLICE)));
short ****mv_array = list ? img->bipred_mv1[by][bx] : img->bipred_mv2[by][bx];
imgpel (*curr_mpr)[16] = img->mpr[0];
OneComponentLumaPrediction (l0_pred, pic_opix_x + mv_array[LIST_0][l0_ref_idx][l0_mode][0], pic_opix_y + mv_array[LIST_0][l0_ref_idx][l0_mode][1], block_size_x, block_size_y, listX[0+currMB->list_offset][l1_ref_idx]);
OneComponentLumaPrediction (l1_pred, pic_opix_x + mv_array[LIST_1][l1_ref_idx][l1_mode][0], pic_opix_y + mv_array[LIST_1][l1_ref_idx][l1_mode][1], block_size_x, block_size_y, listX[1+currMB->list_offset][l1_ref_idx]);
if (apply_weights)
{
int wbp0 = wbp_weight[0][l0_ref_idx][l1_ref_idx][0];
int wbp1 = wbp_weight[1][l0_ref_idx][l1_ref_idx][0];
int offset = (wp_offset[0][l0_ref_idx][0] + wp_offset[1][l1_ref_idx][0] + 1)>>1;
int wp_round = 2*wp_luma_round;
int weight_denom = luma_log_weight_denom + 1;
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++)
curr_mpr[j][i] = iClip1( img->max_imgpel_value,
((wbp0 * *l0pred++ + wbp1 * *l1pred++ + wp_round) >> weight_denom) + offset);
}
else
{
for (j=block_y; j<block_y4; j++)
for (i=block_x; i<block_x4; i++)
curr_mpr[j][i] = (*l0pred++ + *l1pred++ + 1) >> 1;
}
}
/*!
************************************************************************
* \brief
* Residual Coding of an 8x8 Luma block (not for intra)
*
* \return
* coefficient cost
************************************************************************
*/
int LumaResidualCoding8x8 ( Macroblock* currMB, //!< Current Macroblock to be coded
int *cbp, //!< Output: cbp (updated according to processed 8x8 luminance block)
int64 *cbp_blk, //!< Output: block cbp (updated according to processed 8x8 luminance block)
int block8x8, //!< block number of 8x8 block
short p_dir, //!< prediction direction
int l0_mode, //!< list0 prediction mode (1-7, 0=DIRECT)
int l1_mode, //!< list1 prediction mode (1-7, 0=DIRECT)
short l0_ref_idx, //!< reference picture for list0 prediction
short l1_ref_idx //!< reference picture for list0 prediction
)
{
int block_y, block_x, pic_pix_y, pic_pix_x, i, j, nonzero = 0, cbp_blk_mask;
int coeff_cost = 0;
int mb_y = (block8x8 >> 1) << 3;
int mb_x = (block8x8 & 0x01) << 3;
int cbp_mask = 1 << block8x8;
int bxx, byy; // indexing curr_blk
int skipped = (l0_mode == 0 && l1_mode == 0 && (img->type != B_SLICE));
//set transform size
int need_8x8_transform = currMB->luma_transform_size_8x8_flag;
imgpel *imgOrg, *imgPred;
int *m7;
imgpel (*curr_mpr)[16] = img->mpr[0];
int uv, nonzerocr[3]={0,0,0};
coeff_cost_cr[1] = coeff_cost_cr[2] = 0;
//===== loop over 4x4 blocks =====
if(!need_8x8_transform)
{
if (((p_dir == 0 || p_dir == 2 )&& l0_mode < 5) || ((p_dir == 1 || p_dir == 2 ) && l1_mode < 5))
{
LumaPrediction (currMB, mb_x, mb_y, 8, 8, p_dir, l0_mode, l1_mode, l0_ref_idx, l1_ref_idx);
//===== get displaced frame difference ======
for (j = mb_y; j < mb_y + 8; j++)
{
imgOrg = &pCurImg[img->opix_y + j][img->opix_x + mb_x];
imgPred = &curr_mpr[j][mb_x];
m7 = &img->m7[0][j][mb_x];
for (i = 0; i < 8; i++)
{
*m7++ = *imgOrg++ - *imgPred++;
}
}
}
for (byy=0, block_y=mb_y; block_y<mb_y+8; byy+=4, block_y+=4)
{
for (bxx=0, block_x=mb_x; block_x<mb_x+8; bxx+=4, block_x+=4)
{
pic_pix_x = img->opix_x + block_x;
cbp_blk_mask = (block_x >> 2) + block_y;
//===== prediction of 4x4 block =====
if (!(((p_dir == 0 || p_dir == 2 )&& l0_mode < 5) || ((p_dir == 1 || p_dir == 2 ) && l1_mode < 5)))
{
LumaPrediction (currMB, block_x, block_y, 4, 4, p_dir, l0_mode, l1_mode, l0_ref_idx, l1_ref_idx);
//===== get displaced frame difference ======
for (j = block_y; j < block_y + 4; j++)
{
imgOrg = &pCurImg[img->opix_y + j][pic_pix_x];
imgPred = &curr_mpr[j][block_x];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -