📄 macroblock.c
字号:
{
dataPart->ee_recode = dataPart->ee_cabac;
}
}
}
}
}
// Save the slice number of this macroblock. When the macroblock below
// is coded it will use this to decide if prediction for above is possible
(*currMB)->slice_nr = img->current_slice_nr;
// Initialize delta qp change from last macroblock. Feature may be used for future rate control
// Rate control
(*currMB)->qpsp = img->qpsp;
if(input->RCEnable)
rc_handle_mb( prev_mb, *currMB, curr_slice );
else
{
Slice* currSlice = img->currentSlice;
int new_qp = img->qp;
if (prev_mb>-1)
{
(*currMB)->prev_qp = img->mb_data[prev_mb].qp;
(*currMB)->prev_dqp = (img->mb_data[prev_mb].slice_nr == img->current_slice_nr) ? img->mb_data[prev_mb].delta_qp : 0;
}
else
{
(*currMB)->prev_qp = currSlice->qp;
(*currMB)->prev_dqp = 0;
}
if (prev_mb < 0) //first macroblock (of slice)
{
(*currMB)->delta_qp = 0;
(*currMB)->qp = img->qp;
}
else
{
if (!((input->MbInterlace) && img->bot_MB)) //top macroblock
{
if (img->mb_data[prev_mb].prev_cbp == 1)
{
(*currMB)->delta_qp = 0;
(*currMB)->qp = img->qp;
}
else
{
(*currMB)->qp = img->mb_data[prev_mb].prev_qp;
(*currMB)->delta_qp = (*currMB)->qp - img->mb_data[prev_mb].qp;
img->qp = (*currMB)->qp;
}
}
else //bottom macroblock
{
(*currMB)->delta_qp = 0;
(*currMB)->qp = img->qp; // needed in loop filter (even if constant QP is used)
}
}
(*currMB)->delta_qp = new_qp - (*currMB)->qp + (*currMB)->delta_qp;
img->qp = (*currMB)->qp = new_qp;
//(*currMB)->delta_qp = (*currMB)->qp - (*currMB)->prev_qp;
delta_qp_mbaff[(*currMB)->mb_field][img->bot_MB] = (*currMB)->delta_qp;
qp_mbaff [(*currMB)->mb_field][img->bot_MB] = (*currMB)->qp;
}
set_chroma_qp (*currMB);
(*currMB)->qp_scaled[0] = (*currMB)->qp + img->bitdepth_luma_qp_scale - MIN_QP;
(*currMB)->qp_scaled[1] = (*currMB)->qpc[0] + img->bitdepth_chroma_qp_scale;
(*currMB)->qp_scaled[2] = (*currMB)->qpc[1] + img->bitdepth_chroma_qp_scale;
select_dct(*currMB);
// loop filter parameter
if (active_pps->deblocking_filter_control_present_flag)
{
(*currMB)->LFDisableIdc = img->LFDisableIdc;
(*currMB)->LFAlphaC0Offset = img->LFAlphaC0Offset;
(*currMB)->LFBetaOffset = img->LFBetaOffset;
}
else
{
(*currMB)->LFDisableIdc = 0;
(*currMB)->LFAlphaC0Offset = 0;
(*currMB)->LFBetaOffset = 0;
}
// If MB is next to a slice boundary, mark neighboring blocks unavailable for prediction
CheckAvailabilityOfNeighbors(*currMB);
if (input->symbol_mode == CABAC)
CheckAvailabilityOfNeighborsCABAC(*currMB);
// Reset vectors and reference indices
for (l=0; l<2; l++)
{
for (j=img->block_y; j < img->block_y + BLOCK_MULTIPLE; j++)
{
memset(&enc_picture->ref_idx[l][j][img->block_x], -1, BLOCK_MULTIPLE * sizeof(char));
memset(enc_picture->mv [l][j][img->block_x], 0, 2 * BLOCK_MULTIPLE * sizeof(short));
for (i=img->block_x; i < img->block_x + BLOCK_MULTIPLE; i++)
enc_picture->ref_pic_id[l][j][i]= -1;
}
}
// Reset syntax element entries in MB struct
(*currMB)->mb_type = 0;
(*currMB)->cbp_blk = 0;
(*currMB)->cbp = 0;
(*currMB)->c_ipred_mode = DC_PRED_8;
cmp_cbp[1] = cmp_cbp[2] = curr_cbp[0] = curr_cbp[1] = 0;
memset((*currMB)->cbp_bits , 0, 3 * sizeof(int64));
memset((*currMB)->cbp_bits_8x8, 0, 3 * sizeof(int64));
memset ((*currMB)->mvd, 0, BLOCK_CONTEXT * sizeof(int));
memset ((*currMB)->intra_pred_modes, DC_PRED, MB_BLOCK_PARTITIONS * sizeof(char)); // changing this to char would allow us to use memset
memset ((*currMB)->intra_pred_modes8x8, DC_PRED, MB_BLOCK_PARTITIONS * sizeof(char));
//initialize the whole MB as INTRA coded
//Blocks are set to notINTRA in write_one_macroblock
if (input->UseConstrainedIntraPred)
{
img->intra_block[img->current_mb_nr] = 1;
}
// Initialize bitcounters for this macroblock
if(prev_mb < 0) // No slice header to account for
{
(*currMB)->bitcounter[BITS_HEADER] = 0;
}
else if ((*currMB)->slice_nr == img->mb_data[prev_mb].slice_nr) // current MB belongs to the
// same slice as the last MB
{
(*currMB)->bitcounter[BITS_HEADER] = 0;
}
(*currMB)->bitcounter[BITS_MB_MODE ] = 0;
(*currMB)->bitcounter[BITS_INTER_MB ] = 0;
(*currMB)->bitcounter[BITS_CBP_MB ] = 0;
(*currMB)->bitcounter[BITS_COEFF_Y_MB ] = 0;
(*currMB)->bitcounter[BITS_COEFF_UV_MB ] = 0;
(*currMB)->bitcounter[BITS_COEFF_CB_MB ] = 0;
(*currMB)->bitcounter[BITS_COEFF_CR_MB ] = 0;
(*currMB)->bitcounter[BITS_DELTA_QUANT_MB] = 0;
(*currMB)->bitcounter[BITS_STUFFING ] = 0;
if(input->SearchMode == FAST_FULL_SEARCH)
ResetFastFullIntegerSearch ();
// disable writing of trace file
#if TRACE
curr_slice->partArr[0].bitstream->trace_enabled = FALSE;
if (input->partition_mode)
{
curr_slice->partArr[1].bitstream->trace_enabled = FALSE;
curr_slice->partArr[2].bitstream->trace_enabled = FALSE;
}
#endif
}
/*!
************************************************************************
* \brief
* terminates processing of the current macroblock depending
* on the chosen slice mode
************************************************************************
*/
void terminate_macroblock(Macroblock *currMB,
Boolean *end_of_slice, //!< returns true for last macroblock of a slice, otherwise false
Boolean *recode_macroblock //!< returns true if max. slice size is exceeded an macroblock must be recoded in next slice
)
{
int i;
Slice *currSlice = img->currentSlice;
SyntaxElement se;
int *partMap = assignSE2partition[input->partition_mode];
DataPartition *dataPart;
Bitstream *currStream;
int rlc_bits=0;
int use_bitstream_backing = (input->slice_mode == FIXED_RATE || input->slice_mode == CALL_BACK);
int new_slice;
static int skip = FALSE;
// if previous mb in the same slice group has different slice number as the current, it's the
// the start of new slice
new_slice=0;
if ( (img->current_mb_nr==0) || (FmoGetPreviousMBNr(img->current_mb_nr)<0) )
new_slice=1;
else if( img->mb_data[FmoGetPreviousMBNr(img->current_mb_nr)].slice_nr != img->current_slice_nr )
new_slice=1;
*recode_macroblock=FALSE;
switch(input->slice_mode)
{
case NO_SLICES:
currSlice->num_mb++;
*recode_macroblock = FALSE;
if ((currSlice->num_mb) == (int)img->PicSizeInMbs) // maximum number of MBs reached
*end_of_slice = TRUE;
// if it's end of current slice group, slice ends too
*end_of_slice = (Boolean) (*end_of_slice | (img->current_mb_nr == FmoGetLastCodedMBOfSliceGroup (FmoMB2SliceGroup (img->current_mb_nr))));
break;
case FIXED_MB:
// For slice mode one, check if a new slice boundary follows
currSlice->num_mb++;
*recode_macroblock = FALSE;
//! Check end-of-slice group condition first
*end_of_slice = (Boolean) (img->current_mb_nr == FmoGetLastCodedMBOfSliceGroup (FmoMB2SliceGroup (img->current_mb_nr)));
//! Now check maximum # of MBs in slice
*end_of_slice = (Boolean) (*end_of_slice | (currSlice->num_mb >= input->slice_argument));
break;
// For slice modes two and three, check if coding of this macroblock
// resulted in too many bits for this slice. If so, indicate slice
// boundary before this macroblock and code the macroblock again
case FIXED_RATE:
// in case of skip MBs check if there is a slice boundary
// only for CAVLC (img->cod_counter is always 0 in case of CABAC)
if(img->cod_counter)
{
// write out the skip MBs to know how many bits we need for the RLC
se.value1 = img->cod_counter;
se.value2 = 0;
se.type = SE_MBTYPE;
dataPart = &(currSlice->partArr[partMap[se.type]]);
TRACE_SE (se.tracestring, "mb_skip_run");
writeSE_UVLC(&se, dataPart);
rlc_bits=se.len;
currStream = dataPart->bitstream;
// save the bitstream as it would be if we write the skip MBs
currStream->bits_to_go_skip = currStream->bits_to_go;
currStream->byte_pos_skip = currStream->byte_pos;
currStream->byte_buf_skip = currStream->byte_buf;
// restore the bitstream
currStream->bits_to_go = currStream->stored_bits_to_go;
currStream->byte_pos = currStream->stored_byte_pos;
currStream->byte_buf = currStream->stored_byte_buf;
skip = TRUE;
}
//! Check if the last coded macroblock fits into the size of the slice
//! But only if this is not the first macroblock of this slice
if (!new_slice)
{
if(slice_too_big(rlc_bits))
{
*recode_macroblock = TRUE;
*end_of_slice = TRUE;
}
else if(!img->cod_counter)
skip = FALSE;
}
// maximum number of MBs
// check if current slice group is finished
if ((*recode_macroblock == FALSE) && (img->current_mb_nr == FmoGetLastCodedMBOfSliceGroup (FmoMB2SliceGroup (img->current_mb_nr))))
{
*end_of_slice = TRUE;
if(!img->cod_counter)
skip = FALSE;
}
//! (first MB OR first MB in a slice) AND bigger that maximum size of slice
if (new_slice && slice_too_big(rlc_bits))
{
*end_of_slice = TRUE;
if(!img->cod_counter)
skip = FALSE;
}
if (!*recode_macroblock)
currSlice->num_mb++;
break;
case CALL_BACK:
if (img->current_mb_nr > 0 && !new_slice)
{
if (currSlice->slice_too_big(rlc_bits))
{
*recode_macroblock = TRUE;
*end_of_slice = TRUE;
}
}
if ( (*recode_macroblock == FALSE) && (img->current_mb_nr == FmoGetLastCodedMBOfSliceGroup (FmoMB2SliceGroup (img->current_mb_nr))))
*end_of_slice = TRUE;
break;
default:
snprintf(errortext, ET_SIZE, "Slice Mode %d not supported", input->slice_mode);
error(errortext, 600);
}
if (*recode_macroblock == TRUE)
{
// Restore everything
for (i=0; i<currSlice->max_part_nr; i++)
{
dataPart = &(currSlice->partArr[i]);
currStream = dataPart->bitstream;
currStream->bits_to_go = currStream->stored_bits_to_go;
currStream->byte_pos = currStream->stored_byte_pos;
currStream->byte_buf = currStream->stored_byte_buf;
stats->bit_slice = stats->stored_bit_slice;
if (input->symbol_mode == CABAC)
{
dataPart->ee_cabac = dataPart->ee_recode;
}
}
}
if (input->symbol_mode == CAVLC)
{
// Skip MBs at the end of this slice
dataPart = &(currSlice->partArr[partMap[SE_MBTYPE]]);
if(*end_of_slice == TRUE && skip == TRUE)
{
// only for Slice Mode 2 or 3
// If we still have to write the skip, let's do it!
if(img->cod_counter && *recode_macroblock == TRUE) // MB that did not fit in this slice
{
// If recoding is true and we have had skip,
// we have to reduce the counter in case of recoding
img->cod_counter--;
if(img->cod_counter)
{
se.value1 = img->cod_counter;
se.value2 = 0;
se.type = SE_MBTYPE;
#if TRACE
snprintf(se.tracestring, TRACESTRING_SIZE, "Final MB runlength = %3d",img->cod_counter);
#endif
writeSE_UVLC(&se, dataPart);
rlc_bits=se.len;
currMB->bitcounter[BITS_MB_MODE]+=rlc_bits;
img->cod_counter = 0;
}
}
else //! MB that did not fit in this slice anymore is not a Skip MB
{
currStream = dataPart->bitstream;
// update the bitstream
currStream->bits_to_go = currStream->bits_to_go_skip;
currStream->byte_pos = currStream->byte_pos_skip;
currStream->byte_buf = currStream->byte_buf_skip;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -