⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sha.corg

📁 SecuDe是一个由安全应用程序接口组成,对验证机制、证件处理、PEM、X.400报文处理和密钥管理提供支持。SecuDe提供DES、 RSA杂凑函数、密钥生成以及数字签名的生成和核实等多种密码机制。
💻 CORG
字号:
/* NIST proposed Secure Hash Standard.   Written 2 September 1992, Peter C. Gutmann.   This implementation placed in the public domain.   Comments to pgut1@cs.aukuni.ac.nz */#include <string.h>#include "sha.h"/* The SHS f()-functions */#define f1(x,y,z)   ( ( x & y ) | ( ~x & z ) )              /* Rounds  0-19 */#define f2(x,y,z)   ( x ^ y ^ z )                           /* Rounds 20-39 */#define f3(x,y,z)   ( ( x & y ) | ( x & z ) | ( y & z ) )   /* Rounds 40-59 */#define f4(x,y,z)   ( x ^ y ^ z )                           /* Rounds 60-79 *//* The SHS Mysterious Constants */#define K1  0x5A827999L     /* Rounds  0-19 */#define K2  0x6ED9EBA1L     /* Rounds 20-39 */#define K3  0x8F1BBCDCL     /* Rounds 40-59 */#define K4  0xCA62C1D6L     /* Rounds 60-79 *//* SHS initial values */#define h0init  0x67452301L#define h1init  0xEFCDAB89L#define h2init  0x98BADCFEL#define h3init  0x10325476L#define h4init  0xC3D2E1F0L/* 32-bit rotate - kludged with shifts */#define S(n,X)  ( ( X << n ) | ( X >> ( 32 - n ) ) )/* The initial expanding function */#define expand(count)   W[ count ] = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ]/* The four SHS sub-rounds */#define subRound1(count)    \    { \    temp = S( 5, A ) + f1( B, C, D ) + E + W[ count ] + K1; \    E = D; \    D = C; \    C = S( 30, B ); \    B = A; \    A = temp; \    }#define subRound2(count)    \    { \    temp = S( 5, A ) + f2( B, C, D ) + E + W[ count ] + K2; \    E = D; \    D = C; \    C = S( 30, B ); \    B = A; \    A = temp; \    }#define subRound3(count)    \    { \    temp = S( 5, A ) + f3( B, C, D ) + E + W[ count ] + K3; \    E = D; \    D = C; \    C = S( 30, B ); \    B = A; \    A = temp; \    }#define subRound4(count)    \    { \    temp = S( 5, A ) + f4( B, C, D ) + E + W[ count ] + K4; \    E = D; \    D = C; \    C = S( 30, B ); \    B = A; \    A = temp; \    }/* The two buffers of 5 32-bit words */LONG h0, h1, h2, h3, h4;LONG A, B, C, D, E;/* Initialize the SHS values */void shsInit(shsInfo)SHS_INFO *shsInfo;    {    /* Set the h-vars to their initial values */    shsInfo->digest[ 0 ] = h0init;    shsInfo->digest[ 1 ] = h1init;    shsInfo->digest[ 2 ] = h2init;    shsInfo->digest[ 3 ] = h3init;    shsInfo->digest[ 4 ] = h4init;    /* Initialise bit count */    shsInfo->countLo = shsInfo->countHi = 0L;    }/* Perform the SHS transformation.  Note that this code, like MD5, seems to   break some optimizing compilers - it may be necessary to split it into   sections, eg based on the four subrounds */void shsTransform(shsInfo)SHS_INFO *shsInfo;    {    LONG W[ 80 ], temp;    int i;    /* Step A.  Copy the data buffer into the local work buffer */    for( i = 0; i < 16; i++ )	W[ i ] = shsInfo->data[ i ];    /* Step B.  Expand the 16 words into 64 temporary data words */    expand( 16 ); expand( 17 ); expand( 18 ); expand( 19 ); expand( 20 );    expand( 21 ); expand( 22 ); expand( 23 ); expand( 24 ); expand( 25 );    expand( 26 ); expand( 27 ); expand( 28 ); expand( 29 ); expand( 30 );    expand( 31 ); expand( 32 ); expand( 33 ); expand( 34 ); expand( 35 );    expand( 36 ); expand( 37 ); expand( 38 ); expand( 39 ); expand( 40 );    expand( 41 ); expand( 42 ); expand( 43 ); expand( 44 ); expand( 45 );    expand( 46 ); expand( 47 ); expand( 48 ); expand( 49 ); expand( 50 );    expand( 51 ); expand( 52 ); expand( 53 ); expand( 54 ); expand( 55 );    expand( 56 ); expand( 57 ); expand( 58 ); expand( 59 ); expand( 60 );    expand( 61 ); expand( 62 ); expand( 63 ); expand( 64 ); expand( 65 );    expand( 66 ); expand( 67 ); expand( 68 ); expand( 69 ); expand( 70 );    expand( 71 ); expand( 72 ); expand( 73 ); expand( 74 ); expand( 75 );    expand( 76 ); expand( 77 ); expand( 78 ); expand( 79 );    /* Step C.  Set up first buffer */    A = shsInfo->digest[ 0 ];    B = shsInfo->digest[ 1 ];    C = shsInfo->digest[ 2 ];    D = shsInfo->digest[ 3 ];    E = shsInfo->digest[ 4 ];    /* Step D.  Serious mangling, divided into four sub-rounds */    subRound1( 0 ); subRound1( 1 ); subRound1( 2 ); subRound1( 3 );    subRound1( 4 ); subRound1( 5 ); subRound1( 6 ); subRound1( 7 );    subRound1( 8 ); subRound1( 9 ); subRound1( 10 ); subRound1( 11 );    subRound1( 12 ); subRound1( 13 ); subRound1( 14 ); subRound1( 15 );    subRound1( 16 ); subRound1( 17 ); subRound1( 18 ); subRound1( 19 );    subRound2( 20 ); subRound2( 21 ); subRound2( 22 ); subRound2( 23 );    subRound2( 24 ); subRound2( 25 ); subRound2( 26 ); subRound2( 27 );    subRound2( 28 ); subRound2( 29 ); subRound2( 30 ); subRound2( 31 );    subRound2( 32 ); subRound2( 33 ); subRound2( 34 ); subRound2( 35 );    subRound2( 36 ); subRound2( 37 ); subRound2( 38 ); subRound2( 39 );    subRound3( 40 ); subRound3( 41 ); subRound3( 42 ); subRound3( 43 );    subRound3( 44 ); subRound3( 45 ); subRound3( 46 ); subRound3( 47 );    subRound3( 48 ); subRound3( 49 ); subRound3( 50 ); subRound3( 51 );    subRound3( 52 ); subRound3( 53 ); subRound3( 54 ); subRound3( 55 );    subRound3( 56 ); subRound3( 57 ); subRound3( 58 ); subRound3( 59 );    subRound4( 60 ); subRound4( 61 ); subRound4( 62 ); subRound4( 63 );    subRound4( 64 ); subRound4( 65 ); subRound4( 66 ); subRound4( 67 );    subRound4( 68 ); subRound4( 69 ); subRound4( 70 ); subRound4( 71 );    subRound4( 72 ); subRound4( 73 ); subRound4( 74 ); subRound4( 75 );    subRound4( 76 ); subRound4( 77 ); subRound4( 78 ); subRound4( 79 );    /* Step E.  Build message digest */    shsInfo->digest[ 0 ] += A;    shsInfo->digest[ 1 ] += B;    shsInfo->digest[ 2 ] += C;    shsInfo->digest[ 3 ] += D;    shsInfo->digest[ 4 ] += E;    }#ifdef LITTLE_ENDIAN/* When run on a little-endian CPU we need to perform byte reversal on an   array of longwords.  It is possible to make the code endianness-   independant by fiddling around with data at the byte level, but this   makes for very slow code, so we rely on the user to sort out endianness   at compile time */static void byteReverse(buffer, byteCount)LONG *buffer;int byteCount;    {    LONG value;    int count;    byteCount /= sizeof( LONG );    for( count = 0; count < byteCount; count++ )	{	value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 );	buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value &0x00FF00FFL ) << 8 );	}    }#endif /* LITTLE_ENDIAN *//* Update SHS for a block of data.  This code assumes that the buffer size   is a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot   more efficient since it does away with the need to handle partial blocks   between calls to shsUpdate() */void shsUpdate(shsInfo, buffer, count)SHS_INFO *shsInfo;BYTE *buffer;int count;    {    /* Update bitcount */    if( ( shsInfo->countLo + ( ( LONG ) count << 3 ) ) < shsInfo->countLo )	shsInfo->countHi++; /* Carry from low to high bitCount */    shsInfo->countLo += ( ( LONG ) count << 3 );    shsInfo->countHi += ( ( LONG ) count >> 29 );    /* Process data in SHS_BLOCKSIZE chunks */    while( count >= SHS_BLOCKSIZE )	{	memcpy( shsInfo->data, buffer, SHS_BLOCKSIZE );#ifdef LITTLE_ENDIAN	byteReverse( shsInfo->data, SHS_BLOCKSIZE );#endif /* LITTLE_ENDIAN */	shsTransform( shsInfo );	buffer += SHS_BLOCKSIZE;	count -= SHS_BLOCKSIZE;	}    /* Handle any remaining bytes of data.  This should only happen once       on the final lot of data */    memcpy( shsInfo->data, buffer, count );    }void shsFinal(shsInfo)SHS_INFO *shsInfo;    {    int count;    LONG lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;    /* Compute number of bytes mod 64 */    count = ( int ) ( ( shsInfo->countLo >> 3 ) & 0x3F );    /* Set the first char of padding to 0x80.  This is safe since there is       always at least one byte free */    ( ( BYTE * ) shsInfo->data )[ count++ ] = 0x80;    /* Pad out to 56 mod 64 */    if( count > 56 )	{	/* Two lots of padding:  Pad the first block to 64 bytes */	memset( ( BYTE * ) shsInfo->data + count, 0, 64 - count );#ifdef LITTLE_ENDIAN	byteReverse( shsInfo->data, SHS_BLOCKSIZE );#endif /* LITTLE_ENDIAN */	shsTransform( shsInfo );	/* Now fill the next block with 56 bytes */	memset( shsInfo->data, 0, 56 );	}    else	/* Pad block to 56 bytes */	memset( ( BYTE * ) shsInfo->data + count, 0, 56 - count );#ifdef LITTLE_ENDIAN    byteReverse( shsInfo->data, SHS_BLOCKSIZE );#endif /* LITTLE_ENDIAN */    /* Append length in bits and transform */    shsInfo->data[ 14 ] = highBitcount;    shsInfo->data[ 15 ] = lowBitcount;    shsTransform( shsInfo );#ifdef LITTLE_ENDIAN    byteReverse( shsInfo->data, SHS_DIGESTSIZE );#endif /* LITTLE_ENDIAN */    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -