📄 initializedvbs2.c
字号:
/* File: InitializeDVBS2.c
Description: Initializes the DVB-S2 LDPC encoder/decoder
The calling syntax is:
[H_rows, H_cols, [P]] = InitializeDVBS2( rate, size )
Where:
H_rows = a M-row matrix containing the indices of the non-zero rows of H.
H_cols = a (N-M)-row matrix containing the indices of the non-zeros rows of H.
P = (optional) empty matrix. (for consistency with IntializeWiMaxLDPC)
rate = the code rate
size = the size of the code (number of code bits):
= 64,800 for normal (n=64,800)
= 16,200 for short (n=16,200)
Copyright (C) 2005-2007, Rohit Iyer Seshadri and Matthew C. Valenti
Last updated on July 10, 2007.
Function InitializeDVBS2 is part of the Iterative Solutions
Coded Modulation Library. The Iterative Solutions Coded Modulation
Library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include<mex.h>
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include "./include/DVBS2lookup.h"
#define epsilon 1e-2
void initalize(int *u,mxArray *plhs[],int nldpc,int kldpc,int mldpc,int Q, int index)
{
int r,col_ind,row_ind,count,i,j, k,state,op,sum,t,temp,*temp_count, *x, ind; /* used dynamic mem. alloc 4/27 */
int rows, cols,nrows, ncols, *col_index, *row_index, max_col, max_row;
double *H_rows_tmp,*H_cols_tmp,*H_rows, *H_cols;
temp_count=(int*)calloc((mldpc+5),sizeof(int));
x=(int*)calloc((mldpc+5),sizeof(int));
col_index=(int*)calloc((kldpc+5),sizeof(int));
row_index=(int*)calloc((mldpc+5),sizeof(int));
H_rows_tmp=(double*)calloc((mldpc*40),sizeof(double));
H_cols_tmp=(double*)calloc((kldpc*40),sizeof(double));
rows=165;
cols =15;
Q=T_short[index][164][14];
/* Accumulate data bits at specific parity locations */
count=0;
i=0;
while ((i < 165) && (T_short[index][i][1]!=0)){
for (j=0; j< 360;j++){
for (k=1;k<=15;k++){
if ((T_short[index][i][k-1]!=0) || (k==1)){
if (T_short[index][i][1]!=0){
temp=fmod((T_short[index][i][k-1]+(fmod(j,360))*Q),mldpc);/* find the correct parity bit location */
x[temp]=((int)u[count])^((int)x[temp]); /* Accumulate the correponding data bit at that location */
H_cols_tmp[(count)+kldpc*(k-1)]=temp+1;
temp_count[temp]= temp_count[temp]+1;
ind=temp_count[temp];
H_rows_tmp[(temp)+mldpc*(ind-1)]=count+1;
row_index[temp]=ind-1;
col_index[count]=k-1;
}
}
}
count++;
}
i++;
}
max_col=col_index[0];
max_row=row_index[0];
for (i=1;i<=kldpc;i++){
if (max_col <=col_index[i-1]){
max_col=col_index[i-1];
}
}
for (i=1;i<=mldpc;i++){
if (max_row <=row_index[i-1]){
max_row=row_index[i-1];
}
}
plhs[0]= mxCreateDoubleMatrix(mldpc,max_row+1,mxREAL);
plhs[1]= mxCreateDoubleMatrix(kldpc,max_col+1,mxREAL);
/* create output arrays */
H_rows=mxGetPr(plhs[0]);
H_cols=mxGetPr(plhs[1]);
for (i=1;i<=kldpc;i++) {
for (j=1;j<=max_col+1;j++){
H_cols[(i-1)+kldpc*(j-1)]=H_cols_tmp[(i-1)+kldpc*(j-1)];
}
}
for (i=1;i<=mldpc;i++) {
for (j=1;j<=max_row+1;j++) {
H_rows[(i-1)+mldpc*(j-1)]=H_rows_tmp[(i-1)+mldpc*(j-1)];
}
}
free(temp_count);
free(u);
free(col_index);
free(row_index);
free(H_rows_tmp);
free(H_cols_tmp);
return;
}
void mexFunction(int nlhs,mxArray *plhs[],int nrhs, const mxArray *prhs[])
{
double *H_rows,*H_cols,*param,rate,d, *P;
int index,nldpc,kldpc,mldpc,Q,R,*u,i,size;
/* Error checks */
if (nrhs !=2) {
mexErrMsgTxt("2 inputs needed\n");
} else if ((nlhs >3) || (nlhs <2)) {
mexErrMsgTxt(" 2 or 3 outputs needed\n ");
}
/* Assign the variables to corresp. mlab pointers */
rate= mxGetScalar(prhs[0]);
size= mxGetScalar(prhs[1]);
nldpc=size;
if (nlhs ==3)
{
plhs[2]= mxCreateDoubleMatrix(0,0,mxREAL);
P=mxGetPr(plhs[2]);
}
if (size==16200) {
if (fabs(rate - 1.0/4.0) < epsilon ){
kldpc = (int) nldpc*(1.0/5.0);
index = 11;
} else if (fabs(rate - 1.0/3.0) < epsilon ){
kldpc = (int) nldpc*(1.0/3.0);
index = 12;
} else if (fabs(rate - 2.0/5.0) < epsilon ){
kldpc = (int) nldpc*(2.0/5.0);
index = 13;
} else if (fabs(rate - 1.0/2.0) < epsilon ){
kldpc = (int) nldpc*(4.0/9.0);
index = 14;
} else if (fabs(rate - 3.0/5.0) < epsilon ){
kldpc = (int) nldpc*(3.0/5.0);
index = 15;
} else if (fabs(rate - 2.0/3.0) < epsilon ){
kldpc = (int) nldpc*(2.0/3.0);
index = 16;
} else if (fabs(rate - 3.0/4.0) < epsilon ){
kldpc = (int) nldpc*(11.0/15.0);
index = 17;
} else if (fabs(rate - 4.0/5.0) < epsilon ){
kldpc = (int) nldpc*(7.0/9.0);
index = 18;
} else if (fabs(rate - 5.0/6.0) < epsilon ){
kldpc = (int) nldpc*(37.0/45.0);
index = 19;
} else if (fabs(rate - 8.0/9.0) < epsilon ){
kldpc = (int) nldpc*(8.0/9.0);
index = 20;
} else {
mexErrMsgTxt( "This rate is not supported" );
}
} else if (size==64800) {
if (fabs(rate - 1.0/4.0) < epsilon ){
index = 0;
} else if (fabs(rate - 1.0/3.0) < epsilon ){
index = 1;
} else if (fabs(rate - 2.0/5.0) < epsilon ){
index = 2;
} else if (fabs(rate - 1.0/2.0) < epsilon ){
index = 3;
} else if (fabs(rate - 3.0/5.0) < epsilon ){
index = 4;
} else if (fabs(rate - 2.0/3.0) < epsilon ){
index = 5;
} else if (fabs(rate - 3.0/4.0) < epsilon ){
index = 6;
} else if (fabs(rate - 4.0/5.0) < epsilon ){
index = 7;
} else if (fabs(rate - 5.0/6.0) < epsilon ){
index = 8;
} else if (fabs(rate - 8.0/9.0) < epsilon ){
index = 9;
} else if (fabs(rate - 9.0/10.0) < epsilon ){
index = 10;
} else {
mexErrMsgTxt( "This rate is not supported" );
}
kldpc = (int) nldpc*rate;
} else {
mexErrMsgTxt( "Only lengths 16200 and 64800 are supported" );
}
mldpc=nldpc-kldpc;
u=(int*)calloc((kldpc+5),sizeof(int));
initalize(u,plhs,nldpc,kldpc,mldpc,Q,index);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -