📄 r2p_post.vhd.txt
字号:
------------------------------------------------------------------------
------------------------------------------------------------------------
-- post.vhd
-- Cordic post-processing block
-- Compensate cordic algorithm K-factor; divide Radius by 1.6467, or multiply by 0.60725.
-- Approximation: Ra = Ri/2 + Ri/8 - Ri/64 - Ri/512
-- Radius = Ra - Ra/4096 = Ri * 0.60727. This is a 0.0034% error.
-- Implementation: Ra = (Ri/2 + Ri/8) - (Ri/64 + Ri/512)
-- Radius = Ra - Ra/4096
-- Position calculated angle in correct quadrant.
------------------------------------------------------------------------
------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity r2p_post is
port(
clk : in std_logic;
ena : in std_logic;
Ai : in signed(19 downto 0);
Ri : in unsigned(19 downto 0);
Q : in std_logic_vector(2 downto 0);
Ao : out signed(19 downto 0);
Ro : out unsigned(19 downto 0));
end entity r2p_post;
architecture dataflow of r2p_post is
begin
------------------------------------------------------------------------
-- calculate the radius
------------------------------------------------------------------------
radius: block
signal RadA, RadB, RadC : unsigned(19 downto 0);
begin
process(clk)
begin
if (clk'event and clk = '1') then
if (ena = '1') then
RadA <= ('0' & Ri(19 downto 1)) + ("000" & Ri(19 downto 3));
RadB <= ("000000" & Ri(19 downto 6)) + ("000000000" & Ri(19 downto 9));
RadC <= RadA - RadB;
Ro <= RadC - RadC(19 downto 12);
end if;
end if;
end process;
end block radius;
------------------------------------------------------------------------
-- calculate the angle
------------------------------------------------------------------------
angle: block
constant const_PI2 : signed(19 downto 0) := conv_signed(16#40000#, 20); -- PI / 2
constant const_PI : signed(19 downto 0) := conv_signed(16#80000#, 20); -- PI
constant const_2PI : signed(19 downto 0) := (others => '0'); -- 2PI
signal dQ : std_logic_vector(2 downto 1);
signal ddQ : std_logic;
signal AngStep1 : signed(19 downto 0);
signal AngStep2 : signed(19 downto 0);
begin
angle_step1: process(clk, Ai, Q)
variable overflow : std_logic;
variable AngA, AngB, Ang : signed(19 downto 0);
begin
-- check if angle is negative, if so set it to zero
overflow := Ai(19); --and Ai(18);
if (overflow = '1') then
AngA := (others => '0');
else
AngA := Ai;
end if;
-- step 1: Xabs and Yabs are swapped
-- Calculated angle is the angle between vector and Y-axis.
-- ActualAngle = PI/2 - CalculatedAngle
AngB := const_PI2 - AngA;
if (Q(0) = '1') then
Ang := AngB;
else
Ang := AngA;
end if;
if (clk'event and clk = '1') then
if (ena = '1') then
AngStep1 <= Ang;
dQ <= q(2 downto 1);
end if;
end if;
end process angle_step1;
angle_step2: process(clk, AngStep1, dQ)
variable AngA, AngB, Ang : signed(19 downto 0);
begin
AngA := AngStep1;
-- step 2: Xvalue is negative
-- Actual angle is in the second or third quadrant
-- ActualAngle = PI - CalculatedAngle
AngB := const_PI - AngA;
if (dQ(1) = '1') then
Ang := AngB;
else
Ang := AngA;
end if;
if (clk'event and clk = '1') then
if (ena = '1') then
AngStep2 <= Ang;
ddQ <= dQ(2);
end if;
end if;
end process angle_step2;
angle_step3: process(clk, AngStep2, ddQ)
variable AngA, AngB, Ang : signed(19 downto 0);
begin
AngA := AngStep2;
-- step 3: Yvalue is negative
-- Actual angle is in the third or fourth quadrant
-- ActualAngle = 2PI - CalculatedAngle
AngB := const_2PI - AngA;
if (ddQ = '1') then
Ang := AngB;
else
Ang := AngA;
end if;
if (clk'event and clk = '1') then
if (ena = '1') then
Ao <= Ang;
end if;
end if;
end process angle_step3;
end block angle;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -