📄 contents.m
字号:
%
%
% NEURAL NETWORK BASED SYSTEM IDENTIFICATION TOOLBOX
%
% Version 1.0
%
% Institute of Automation
% Building 326
% 2800 Lyngby, Denmark
%
% Technical University of Denmark
%
% --OO--
%
%
%FUNCTIONS FOR TRAINING NETWORKS:
%batbp : Batch version of the back-propagation algorithm.
%incbp : Recursive (/incremental) version of back-propagation.
%marq : Levenberg-Marquardt method.
%marqlm : Memory-saving implementation of the Levenberg-Marquardt method.
%rpe : Recursive prediction error (Gauss-Newton) method.
%
%
%FUNCTIONS FOR PRETREATING THE DATA:
%dscale : Scale data to zero mean and variance one.
%
%
%FUNCTIONS FOR TRAINING NETWORKS TO MODEL DYNAMIC SYSTEMS:
%lipschit : Determine the lag space.
%nnarmax1 : Identify a Neural Network ARMAX (or ARMA) model (Linear MA filter).
%nnarmax2 : Identify a Neural Network ARMAX (or ARMA) model.
%nnarx : Identify a Neural Network ARX (or AR) model.
%nniol : Identify a Neural Network model suited for I-O linearization control
%nnoe : Identify a Neural Network Output Error model.
%nnrarmx1 : Recursive counterpart to NNARMAX1.
%nnrarmx2 : Recursive counterpart to NNARMAX2.
%nnrarx : Recursive counterpart to NNARX.
%nnssif : Identify a NN State Space Innovations form model.
%
%
%FUNCTIONS FOR PRUNING NETWORKS:
%netstruc : Extract weight matrices from matrix of parameter vectors.
%nnprune : Prune models of dynamic systems with Optimal Brain Surgeon (OBS).
%obdprune : Prune feed-forward networks with Optimal Brain Damage (OBD).
%obsprune : Prune feed-forward networks with Optimal Brain Surgeon (OBS).
%
%
%FUNCTIONS FOR EVALUATING TRAINED NETWORKS:
%fpe : FPE estimate of the generalization error for feed-forward nets.
%ifvalid : Validation of models generated by NNSSIF.
%ioleval : Validation of models generated by NNIOL.
%loo : Leave-One-Out estimate of generalization error for feed-forward nets
%nneval : Validation of feed-forward networks (trained by marq,rpe,bp).
%nnfpe : FPE for I/O models of dynamic systems.
%nnsimul : Simulate model of dynamic system from control sequence alone.
%nnvalid : Validation of I/O models of dynamic systems.
%wrescale : Rescale weights of trained network.
%
%
%MISCELLANOUS FUNCTIONS:
%README : This file.
%Contents : Contents file.
%drawnet : Draws a two layer neural network.
%getgrad : Derivative of network outputs w.r.t. the weights.
%pmntanh : Fast tanh function.
%
%
%DEMOS:
%test1 : Demonstrates different training methods on a curve fitting example.
%test2 : Demonstrates the NNARX function.
%test3 : Demonstrates the NNARMAX2 function.
%test4 : Demonstrates the NNSSIF function.
%test5 : Demonstrates the NNOE function.
%test6 : Demonstrates the effect of regularization by weight decay.
%test7 : Demonstrates pruning by OBS on the sunspot benchmark problem.
%
%
%OTHER FILES IN DIRECTORY
%pmnshow, test6mat, test7mat, and solplet.asc are used by the test programs.
%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -