📄 nnigls.m
字号:
function [W1,W2,lambda,GAMMA]=nnigls(NetDef,NN,W1,W2,trparms,repeat,GAMMA,Y,U)
% NNIGLS
% ------
% Train a multi-output NNARX model using an iterated generalized
% least squares method (IGLS).
%
% CALL:
% [W1,W2,lambda,GAMMA] = nnigls(NetDef,NN,W1,W2,trparms,repeat,GAMMA,Y,U)
%
% INPUTS:
% U,Y,NN,W1,W2 : See NNARXM
% trparms : Contains parameters associated with the training (see MARQ)
% If trparms=[] it is reset to trparms = [50 0 1 0]
% repeat : Number of times the procedure should be repeated
% If repeat=[] it is set to repeat=5
% GAMMA : Covariance matrix. If passed as [] it is initialized to
% the identity matrix.
%
% OUTPUTS:
% W1, W2, lambda: See MARQ
% GAMMA : Estimated covariance matrix
%
% Programmed by : Magnus Norgaard, IAU/IMM technical University of Denmark
% LastEditDate : June 15, 1997
% >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> INITIALIZATIONS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<
[ny,N] = size(Y); % Size of data set
[ny,NNn]= size(NN);
na = NN(:,1);
if NNn==1
nb = 0; % nnar model
nk = 0;
nu = 0;
nab=na;
else
[nu,N] = size(U);
nb = NN(:,2:1+nu); % nnarx model
nk = NN(:,2+nu:1+2*nu);
if nu>1,
nab = na + sum(nb')';
else
nab = na+nb;
end
end
if isempty(repeat), repeat = 5; end
nmax = max(max([na nb+nk-1]));
% -- Initialize weights if nescessary --
if isempty(W1) | isempty(W2),
hidden = length(NetDef(1,:)); % Number of hidden neurons
W1 = rand(hidden,sum(nab)+1)-0.5;
W2 = rand(ny,hidden+1)-0.5;
end
% -- Initialize 'trparms' if nescessary --
if isempty(trparms), trparms=[50 0 1 0]; end
% >>>>>>>>>>>>>>>>>>>> CONSTRUCT THE REGRESSION MATRIX PHI <<<<<<<<<<<<<<<<<<<<<
PHI = zeros(sum(nab),N-nmax);
jj = nmax+1:N;
index = 0;
for o=1:ny,
for k = 1:na(o), PHI(k+index,:) = Y(o,jj-k); end
index = index+na(o);
for kk = 1:nu,
for k = 1:nb(o,kk), PHI(k+index,:) = U(kk,jj-k-nk(o,kk)+1); end
index = index + nb(o,kk);
end
end
% >>>>>>>>>>>>>>>>>>>> CALL TRAINING FUNCTION <<<<<<<<<<<<<<<<<<<<<
if isempty(GAMMA), GAMMA=eye(ny); end
GAMMAi = inv(GAMMA);
for iglsiter=1:repeat,
S = sqrtm(GAMMAi);
YS = S*Y;
[W1,W2,PIvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,YS(:,nmax+1:N),trparms);
[Yhat,E] = nneval(NetDef,W1,W2,PHI,YS(:,nmax+1:N),1);
E=(GAMMA*S')*E;
GAMMA = (E*E')/(N-nmax);
GAMMAi= inv(GAMMA);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -