⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nnfpe.m

📁 类神经网路─MATLAB的应用(范例程式)
💻 M
字号:
function [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat)
%  NNFPE
%  ----- 
%           This function calculates Akaike's final prediction error
%           estimate of the average generalization error for network
%           models generated by NNARX, NNOE, NNARMAX1+2, or their recursive
%           counterparts.
%
%  [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat)
%  produces the final prediction error estimate (fpe), the effective number
%  of weights in the network if it has been trained with weight decay,
%  an estimate of the noise variance, and the Gauss-Newton Hessian.
%  
%  INPUT:
%  See the function used for creating the model. The argument
%  'Chat' should only be included if method='nnarmax1'. skip is 
%  optional (or may be passed as []) in which case it is reset to 0.
%  
%  OUTPUT:
%  FPE    : The final prediction error estimate 
%  deff   : The effective number of weights
%  varest : Estimate of the noise variance
%  H      : The Gauss-Newton Hessian
%
%  REFERENCE:
%       J. Larsen & L.K. Hansen:
%       "Generalization Performance of Regularized Neural Network Models"
%        Proc. of the IEEE Workshop on Neural networks for Signal Proc. IV,
%        Piscataway, New Jersey, pp.42-51, 1994
% 
%  Programmed by : Magnus Norgaard, IAU/IMM, Technical Univ. of Denmark
%  LastEditDate  : July 17, 1996


%----------------------------------------------------------------------------------
%--------------             NETWORK INITIALIZATIONS                   -------------
%----------------------------------------------------------------------------------
[outputs,N] = size(Y);                  % # of outputs and # of data
[hidden,inputs] = size(W1);             % # of hidden units 
inputs=inputs-1;                        % # of inputs
parameters1= hidden*(inputs+1);         % # of input-to-hidden weights
parameters2= outputs*(hidden+1);        % # of hidden-to-output weights
parameters = parameters1 + parameters2; % Total # of weights
 if strcmp(method,'nnarmax1') | strcmp(method,'nnrarmx1'),
  parameters12 = parameters;
  nc = length(Chat)-1;
  parameters = parameters12+nc;
                                        % Parameter vector containing all weights
  theta = [reshape(W2',parameters2,1) ; reshape(W1',parameters1,1) ; Chat(2:nc+1)'];
else
  theta = [reshape(W2',parameters2,1) ; reshape(W1',parameters1,1)];
end                                    
theta_index = find(theta);              % Index to weights<>0
theta_red = theta(theta_index);         % Reduced parameter vector
reduced  = length(theta_index);         % The # of parameters in theta_red
if length(trparms)==4,                  % Scalar weight decay parameter
  D = trparms(4*ones(1,reduced))';      
elseif length(trparms)==5,              % Two weight decay parameters
  D = trparms([4*ones(1,parameters2) 5*ones(1,parameters1)])';
  D = D(theta_index);
else                                    % No weight decay  D = 0;
  D = 0;
end
if ~exist('skip')
  skip=0;
elseif skip==[],
  skip=0;
end
skip=skip+1;
if ~exist('Chat'), Chat=[]; end;


% >>>>>>>>>>>>>>>>>>>>>>  GET NETWORK OUTPUT AND GRADIENT   <<<<<<<<<<<<<<<<<<<<<<
[PSI,E] = getgrad(method,NetDef,NN,W1,W2,Chat,Y,U);
N = length(E);
N2 = N-skip+1;
PI = E(skip:N)*E(skip:N)'/(2*N2);      % Normalized SSE
PI_vector(reduced) = PI;               % Collect PI in vector
PSI_red = PSI(theta_index,skip:N);

        
% >>>>>>>>>>>>>>>>>>>>>>>>    COMPUTE THE HESSIAN MATRIX   <<<<<<<<<<<<<<<<<<<<<<
% --- Calculate the Hessian matrix ---
PSI_red = PSI(theta_index,:);
R     = PSI_red*PSI_red';
H     = R;
index3   = 1:(reduced+1):(reduced^2);       % A third useful vector
H(index3) = H(index3) + D';                 % Add weight deacy to diagonal

% --- FPE in case of no weight decay ---
if D==0,
  FPE  = PI*(N2 + reduced) / (N2 - reduced);
  deff = reduced;
  varest = 2*N*PI/(N-reduced);
else

  % --- FPE in case of weight decay ---
  H_inv  = inv(H);                            % Inverse Hessian
  RHinv  = R*H_inv;
  Dmat   = diag(D);
  gamma1 = trace(RHinv*RHinv);                % Effective # of parameters
  gamma2 = trace(RHinv);        
  %gamma3 = theta(theta_index)'*Dmat*H_inv*RHinv*Dmat*theta(theta_index)/N;
  %varest = (2*N2*PI-N2*gamma3) / (N2 + gamma1 - 2*gamma2);
  %FPE    = (varest*(1+gamma1/N2) + gamma3)/2;  % FPE estimate
  varest  = 2*N2*PI/ (N2 + gamma1 - 2*gamma2);
  FPE = (N2+gamma1)*PI/(N2+gamma1-2*gamma2);  % FPE estimate
  deff = gamma1;                              % Effective # of parameters
end


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -