📄 marqlm.m
字号:
function [W1,W2,PI_vector,iteration,lambda]=marqlm(NetDef,W1,W2,PHI,Y,trparms)
% MARQLM
% ------
% Levenberg-Marquardt training algorithm that uses less memory
% than MARQ but is slower. The difference in speed occurs because
% the function is less 'vetorized' (which is a MATLAB problem)
% but also because some calculations are done more than once.
%
% Programmed by : Magnus Norgaard, IAU/IMM, Technical Univ. of Denmark
% LastEditDate : July 16, 1996
%----------------------------------------------------------------------------------
%-------------- NETWORK INITIALIZATIONS -------------
%----------------------------------------------------------------------------------
[outputs,N] = size(Y); % # of outputs and # of data
[hidden,inputs] = size(W1); % # of hidden units
inputs=inputs-1; % # of inputs
L_hidden = find(NetDef(1,:)=='L')'; % Location of linear hidden neurons
H_hidden = find(NetDef(1,:)=='H')'; % Location of tanh hidden neurons
L_output = find(NetDef(2,:)=='L')'; % Location of linear output neurons
H_output = find(NetDef(2,:)=='H')'; % Location of tanh output neurons
y1 = [zeros(hidden,1);1]; % Hidden layer outputs
y2 = zeros(outputs,1); % Network output
index = outputs*(hidden+1) + 1 + [0:hidden-1]*(inputs+1); % A useful vector!
iteration = 1; % Counter variable
dw = 1; % Flag telling that the weights are new
PHI = [PHI;ones(1,N)]; % Augment PHI with a row containg ones
parameters1= hidden*(inputs+1); % # of input-to-hidden weights
parameters2= outputs*(hidden+1); % # of hidden-to-output weights
parameters = parameters1 + parameters2; % Total # of weights
PSI = zeros(parameters,outputs); % Deriv. of each output w.r.t. each weight % Parameter vector containing all weights
theta = [reshape(W2',parameters2,1) ; reshape(W1',parameters1,1)];
theta_index = find(theta); % Index to weights<>0
theta_red = theta(theta_index); % Reduced parameter vector
reduced = length(theta_index); % The # of parameters in theta_red
index3 = 1:(reduced+1):(reduced^2); % A third useful vector
lambda_old = 0;
if ~exist('trparms') % Default training parameters
max_iter = 500;
stop_crit = 0;
lambda = 1;
D = 0;
else % User specified values
max_iter = trparms(1);
stop_crit = trparms(2);
lambda = trparms(3);
if length(trparms)==4, % Scalar weight decay parameter
D = trparms(4*ones(1,reduced))';
elseif length(trparms)==5, % Two weight decay parameters
D = trparms([4*ones(1,parameters2) 5*ones(1,parameters1)])';
D = D(theta_index);
elseif length(trparms)>5, % Individual weight decay
D = trparms(4:length(trparms))';
end
end
PI_vector= zeros(1,max_iter); % Vec. cont. cost fct. for each iteration
%----------------------------------------------------------------------------------
%-------------- TRAIN NETWORK -------------
%----------------------------------------------------------------------------------
clc;
c=fix(clock);
fprintf('Network training started at %2i.%2i.%2i\n\n',c(4),c(5),c(6));
% >>>>>>>>>>>>>>>>>>>>> COMPUTE NETWORK OUTPUT y2(theta) <<<<<<<<<<<<<<<<<<<<<<
SSE = 0;
for t=1:N,
h1 = W1*PHI(:,t);
y1(H_hidden) = pmntanh(h1(H_hidden));
y1(L_hidden) = h1(L_hidden);
h2 = W2*y1;
y2(H_output) = pmntanh(h2(H_output));
y2(L_output) = h2(L_output);
E = Y(:,t) - y2; % Training error
SSE = SSE + E'*E; % Sum of squared errors (SSE)
end
PI = (SSE+theta_red'*(D.*theta_red))/(2*N); % Performance index
while iteration<=max_iter
if dw==1,
% >>>>>>>>>>>>>>>>>>>>>>>>>>> COMPUTE THE PSI MATRIX <<<<<<<<<<<<<<<<<<<<<<<<<<
% (The derivative of each network output (y2) with respect to each weight)
G = zeros(reduced,1);
H = diag(D);
for t=1:N,
h1 = W1*PHI(:,t);
y1(H_hidden) = pmntanh(h1(H_hidden));
y1(L_hidden) = h1(L_hidden);
h2 = W2*y1;
y2(H_output) = pmntanh(h2(H_output));
y2(L_output) = h2(L_output);
E = Y(:,t) - y2; % Training error
% ========== Elements corresponding to the linear output units ============
for i = L_output'
index1 = (i-1) * (hidden + 1) + 1;
% -- The part of PSI corresponding to hidden-to-output layer weights --
PSI(index1:index1+hidden,i) = y1;
% ---------------------------------------------------------------------
% -- The part of PSI corresponding to input-to-hidden layer weights ---
for j = L_hidden',
PSI(index(j):index(j)+inputs,i) = W2(i,j)*PHI(:,t);
end
for j = H_hidden',
PSI(index(j):index(j)+inputs,i) = W2(i,j)*(1-y1(j).*y1(j))*PHI(:,t);
end
% ---------------------------------------------------------------------
end
% ============ Elements corresponding to the tanh output units =============
for i = H_output',
index1 = (i-1) * (hidden + 1) + 1;
% -- The part of PSI corresponding to hidden-to-output layer weights --
PSI(index1:index1+hidden,i) = y1*(1 - y2(i,:).*y2(i,:));
% ---------------------------------------------------------------------
% -- The part of PSI corresponding to input-to-hidden layer weights ---
for j = L_hidden',
PSI(index(j):index(j)+inputs,i) = W2(i,j)*(1-y2(i).*y2(i))* PHI(:,t);
end
for j = H_hidden',
PSI(index(j):index(j)+inputs,i) = W2(i,j)*(1-y1(j).*y1(j))...
*(1-y2(i).*y2(i))* PHI(:,t);
end
% ---------------------------------------------------------------------
end
PSI_red = PSI(theta_index,:);
G = G + PSI_red*E; % -- Gradient --
H = H + PSI_red*PSI_red'; % -- Hessian --
end
G = G - D.*theta_red;
dw = 0;
end
% >>>>>>>>>>>>>>>>>>>>>>>>>>> COMPUTE h_k <<<<<<<<<<<<<<<<<<<<<<<<<<<
% -- Hessian --
H(index3) = H(index3)'+(lambda-lambda_old); % Add diagonal matrix
% -- Search direction --
U = chol(H);
x = U'\G;
h = U\x;
% h = H\G; % Solve for search direction
% -- Compute 'apriori' iterate --
theta_red_new = theta_red + h; % Update parameter vector
theta(theta_index) = theta_red_new;
% -- Put the parameters back into the weight matrices --
W1_new = reshape(theta(parameters2+1:parameters),inputs+1,hidden)';
W2_new = reshape(theta(1:parameters2),hidden+1,outputs)';
% >>>>>>>>>>>>>>>>>>>> COMPUTE NETWORK OUTPUT y2(theta+h) <<<<<<<<<<<<<<<<<<<<
SSE_new = 0;
for t=1:N,
h1 = W1_new*PHI(:,t);
y1(H_hidden) = pmntanh(h1(H_hidden));
y1(L_hidden) = h1(L_hidden);
h2 = W2_new*y1;
y2(H_output) = pmntanh(h2(H_output));
y2(L_output) = h2(L_output);
E_new = Y(:,t) - y2; % Training error
SSE_new = SSE_new + E_new'*E_new; % Sum of squared errors (SSE)
end
PI_new = (SSE_new + theta_red_new'*(D.*theta_red_new))/(2*N); % PI
% >>>>>>>>>>>>>>>>>>>>>>>>>>> UPDATE lambda <<<<<<<<<<<<<<<<<<<<<<<<<<<<
L = h'*G + h'*(h.*(D+lambda));
lambda_old = lambda;
% Decrease lambda if SSE has fallen 'sufficiently'
if 2*N*(PI - PI_new) > (0.75*L),
lambda = lambda/2;
% Increase lambda if SSE has grown 'sufficiently'
elseif 2*N*(PI-PI_new) <= (0.25*L),
lambda = 2*lambda;
end
% >>>>>>>>>>>>>>>>>>>> UPDATES FOR NEXT ITERATION <<<<<<<<<<<<<<<<<<<<
% Update only if criterion has decreased
if PI_new < PI,
W1 = W1_new;
W2 = W2_new;
theta_red = theta_red_new;
PI = PI_new;
lambda_old=0;
dw = 1;
iteration = iteration + 1;
PI_vector(iteration-1) = PI; % Collect PI in vector
fprintf('iteration # %i PI = %4.3e\r',iteration-1,PI); % Print on-line inform
end
% Check if stopping condition is fulfilled
if (PI < stop_crit) | (lambda>1e7), break, end
end
%----------------------------------------------------------------------------------
%-------------- END OF NETWORK TRAINING -------------
%----------------------------------------------------------------------------------
PI_vector = PI_vector(1:iteration-1);
c=fix(clock);
fprintf('\n\nNetwork training ended at %2i.%2i.%2i\n',c(4),c(5),c(6));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -