📄 rpe.m
字号:
function [W1,W2,PI_vector,iter]=rpe(NetDef,W1,W2,PHI,Y,trparms,method)
% RPE
% ---
% Train a two layer neural network with a recursive prediction error
% algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully
% connected) networks can be trained.
%
% The activation functions can either be linear or tanh. The network
% architecture is defined by the matrix 'NetDef', which has of two
% rows. The first row specifies the hidden layer while the second
% specifies the output layer.
%
% E.g.: NetDef = ['LHHHH'
% 'LL---']
%
% (L = linear, H = tanh)
%
% A weight is pruned by setting it to zero.
%
% The algorithm is described in:
% L. Ljung: "System Identification - Theory for the User"
% (Prentice-Hall, 1987)
%
% Notice that the bias is included as the last column
% in the weight matrices.
%
% CALL:
% [W1,W2,critvec,iter]=rpe(NetDef,W1,W2,PHI,Y,trparms,method)
%
% INPUT:
% NetDef: Network definition
% W1 : Input-to-hidden layer weights. The matrix dimension is
% dim(W1) = [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
% W2 : hidden-to-output layer weights.
% dim(W2) = [(outputs) * (# of hidden units + 1)]
% PHI : Input vector. dim(PHI) = [(inputs) * (# of data)]
% Y : Output data. dim(Y) = [(outputs) * (# of data)]
% trparms : Contains parameters associated with the training
% method : Training (=estimation) method (ff, ct, efra)
% method = 'ff' (forgetting factor)
% trparms = [max_iter stop_crit p0 lambda]
% method = 'ct' (constant trace)
% trparms = [max_iter stop_crit alpha_max alpha_min]
% method = 'efra' (exponential forgetting and resetting algorithm)
% trparms = [max_iter stop_crit alpha beta delta lambda]
% max_iter : max # of iterations.
% stop_crit : Stop training if criterion gets below this value
% p0 : The covariance matrix is initialized to p0*I
% lambda : Forgetting factor
% alpha_max : Max. eigenvalue of P matrix
% alpha_min : Min. eigenvalue of P matrix
% alpha, beta, delta: EFRA parameters
%
%
% OUTPUT:
% W1, W2 : Weight matrices after training
% critvec : Vector containing the criterion of fit after each iteration
% iter : # of iterations
%
% Programmed by : Magnus Norgaard, IAU/IMM, Technical University of Denmark
% LastEditDate : July 17, 1996
%----------------------------------------------------------------------------------
%-------------- NETWORK INITIALIZATIONS -------------
%----------------------------------------------------------------------------------
max_iter = trparms(1);
stop_crit= trparms(2);
[outputs,N] = size(Y); % # of outputs and # of data
[hidden,inputs] = size(W1); % # of hidden units
inputs =inputs-1; % # of inputs
L_hidden = find(NetDef(1,:)=='L')'; % Location of linear hidden neurons
H_hidden = find(NetDef(1,:)=='H')'; % Location of tanh hidden neurons
L_output = find(NetDef(2,:)=='L')'; % Location of linear output neurons
H_output = find(NetDef(2,:)=='H')'; % Location of tanh output neurons
PI_vector= []; % Vector containing the accumulated SSE
y1 = zeros(hidden,1); % Hidden layer outputs
y2 = zeros(outputs,1); % Network output
index = outputs*(hidden+1) + 1 + [0:hidden-1]*(inputs+1); % A useful vector!
PHI_aug = [PHI;ones(1,N)]; % Augment PHI with a row containg ones
parameters1= hidden*(inputs+1); % # of input-to-hidden weights
parameters2= outputs*(hidden+1); % # of hidden-to-output weights
parameters = parameters1 + parameters2; % Total # of weights
PSI = zeros(parameters,outputs); % Deriv. of each output w.r.t. each weight
% Parametervector containing all weights
theta = [reshape(W2',parameters2,1) ; reshape(W1',parameters1,1)];
theta_index = find(theta); % Index to weights<>0
theta_red = theta(theta_index); % Reduced parameter vector
reduced = length(theta_index); % The # of parameters in theta_red
index3= 1:(reduced+1):(reduced^2); % Yet another useful vector
if strcmp(method,'ff'), % Forgetting factor method
mflag = 1; % Method flag
lambda = trparms(4); % Forgetting factor
p0 = trparms(3);
P = p0 * eye(reduced); % Initialize covariance matrix
elseif strcmp(method,'ct'), % Constant trace method
mflag = 2; % Method flag
alpha_max = trparms(3); % Max. eigenvalue
alpha_min = trparms(4); % Min. eigenvalue
P = alpha_max * eye(reduced); % Initialize covariance matrix
elseif strcmp(method,'efra'), % EFRA method
mflag = 3; % Method flag
alpha = trparms(3); % EFRA parameters
beta = trparms(4);
delta = trparms(5);
lambda = trparms(6);
gamma = (1-lambda)/lambda;
% Max. eigenvalue
maxeig = gamma/(2*delta)*(1+sqrt(1+4*beta*delta/(gamma*gamma)));
P = maxeig * eye(reduced); % Initialize covariance matrix
betaI = beta*eye(reduced); % Useful diagonal matrix
end
I = eye(outputs); % (outputs|outputs) unity matrix
lambdaI = lambda*I; % Diagonal matrix
%----------------------------------------------------------------------------------
%------------- TRAIN NETWORK -------------
%----------------------------------------------------------------------------------
clc;
c=fix(clock);
fprintf('Network training started at %2i.%2i.%2i\n\n',c(4),c(5),c(6));
for iteration=1:max_iter,
SSE=0;
for t=1:N,
% >>>>>>>>>>>>>>>>>>>>>>>> COMPUTE NETWORK OUTPUT y2(theta) <<<<<<<<<<<<<<<<<<<<<<
h1 = W1(:,1:inputs)*PHI(:,t) + W1(:,inputs+1);
y1(H_hidden) = pmntanh(h1(H_hidden));
y1(L_hidden) = h1(L_hidden);
h2 = W2(:,1:hidden)*y1 + W2(:,hidden+1);
y2(H_output) = pmntanh(h2(H_output));
y2(L_output) = h2(L_output);
y1_aug=[y1;1];
E = Y(:,t) - y2; % Training error
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>> COMPUTE THE PSI MATRIX <<<<<<<<<<<<<<<<<<<<<<<<<<<
% (The derivative of each y2(t) with respect to each weight)
% ========== Elements corresponding to the linear output units ============
for i = L_output'
% -- The part of PSI corresponding to hidden-to-output layer weights --
index1 = (i-1) * (hidden + 1) + 1;
PSI(index1:index1+hidden,i) = y1_aug;
% ---------------------------------------------------------------------
% -- The part of PSI corresponding to input-to-hidden layer weights ---
for j = L_hidden',
PSI(index(j):index(j)+inputs,i) = W2(i,j)*PHI_aug(:,t);
end
for j = H_hidden',
PSI(index(j):index(j)+inputs,i) = W2(i,j)*(1-y1(j)*y1(j))*PHI_aug(:,t);
end
% ---------------------------------------------------------------------
end
% ============ Elements corresponding to the tanh output units =============
for i = H_output',
% -- The part of PSI corresponding to hidden-to-output layer weights --
index1 = (i-1) * (hidden + 1) + 1;
PSI(index1:index1+hidden,i) = y1_aug * (1 - y2(i)*y2(i));
% ---------------------------------------------------------------------
% -- The part of PSI corresponding to input-to-hidden layer weights ---
for j = L_hidden',
PSI(index(j):index(j)+inputs,i) = W2(i,j)*(1-y2(i)*y2(i))...
* PHI_aug(:,t);
end
for j = H_hidden',
PSI(index(j):index(j)+inputs,i) = W2(i,j)*(1-y1(j)*y1(j))...
*(1-y2(i)*y2(i)) * PHI_aug(:,t);
end
% ---------------------------------------------------------------------
end
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>> UPDATE THE WEIGHTS <<<<<<<<<<<<<<<<<<<<<<<<<<<
PSI_red = PSI(theta_index);
% ---------- Forgetting factor method ----------
if mflag == 1,
% -- Update P matrix --
P = (P - P*PSI_red*inv(lambdaI + PSI_red'*P*PSI_red)*PSI_red'*P ) / lambda;
% -- Update Parameters --
theta_red = theta_red + P*PSI_red*E;
% ---------- Constant trace method ----------
elseif mflag == 2,
% -- Measurement update of P matrix --
P = (P - P*PSI_red * inv(I + PSI_red'*P*PSI_red) * PSI_red'*P );
% -- Update Parameters --
theta_red = theta_red + P*PSI_red*E;
% -- Time update of P matrix --
P = ((alpha_max-alpha_min)/trace(P))*P;
P(index3) = P(index3)+alpha_min;
% ---------- EFRA method ----------
else
% -- Correction factor --
K = P*PSI_red * (alpha*inv(I + PSI_red'*P*PSI_red));
% -- Update Parameters --
theta_red = theta_red + K*E;
% -- Update P --
P = P/lambda - K*PSI_red'*P + betaI-delta*P*P;
end
theta(theta_index) = theta_red; % Put estimated weights back into theta
% -- Put the parameters back into the weight matrices --
W1 = reshape(theta(parameters2+1:parameters),inputs+1,hidden)';
W2 = reshape(theta(1:parameters2),hidden+1,outputs)';
% -- Accumulate SSE --
SSE = SSE + E'*E;
end
%>>>>>>>>>>>>>>>>>>>>>> UPDATES FOR NEXT ITERATION <<<<<<<<<<<<<<<<<<<<
PI = SSE/(2*N);
PI_vector(iteration) = PI; % Collect PI
fprintf('iteration # %i PI = %4.3e\r',iteration,PI); % Print on-line inform.
if PI < stop_crit, break, end % Check if stop condition is fulfilled
end
%----------------------------------------------------------------------------------
%------------- END OF NETWORK TRAINING --------------
%----------------------------------------------------------------------------------
c=fix(clock);
fprintf('\n\nNetwork training ended at %2i.%2i.%2i\n',c(4),c(5),c(6));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -