⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm_w_usage.py

📁 一种基于局部密度比权重设置模型的加权支持向量回归模型来单步求解多分类问题:该方法先分别对类样本中每类样本利用局部密度比权重设置模型求出每个样本的权重隶属因子,然后运用加权lib支持向量回归算法对所有样
💻 PY
字号:
#!/usr/bin/env pythonimport stringfrom svm import *f = open("../heart.10", "r")labels = []samples = []weights = []line = f.readline()max_index = 0while line:	elems = string.split(line)	sample = {}	for e in elems[1:]:		points = string.split(e, ":")		sample[int(points[0])] = float(points[1])                if max_index < int(points[0]):                    max_index = int(points[0])                    	labels.append(float(elems[0]))	samples.append(sample)        weights.append(0.001)	line = f.readline()f.close()print "%d samples loaded." % (len(samples))param = svm_parameter(svm_type = C_SVC, kernel_type = RBF, gamma=1.0/max_index)for i in range(10):    print weights        prob = svm_problem(labels, samples, weights)    model=svm_model(prob, param)    for i in range(len(samples)):        if model.predict(samples[i]) != labels[i]:	    print ("deemphasizing %d"%i)            weights[i] = weights[i] / 2.0        else:            weights[i] = weights[i] * 2.0        

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -