⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sort.c

📁 地震波正演和显示模块
💻 C
📖 第 1 页 / 共 2 页
字号:
	pstack[top] = 0;
	qstack[top++] = n-1;

	/* while subarrays remain to be sorted */
	while(top!=0) {

		/* get a subarray off the stack */
		p = pstack[--top];
		q = qstack[top];

		/* while subarray can be partitioned efficiently */
		while(q-p>NSMALL) {

			/* partition subarray into two subarrays */
			qkipart(a,i,p,q,&j,&k);

			/* save larger of the two subarrays on stack */
			if (j-p<q-k) {
				pstack[top] = k;
				qstack[top++] = q;
				q = j;
			} else {
				pstack[top] = p;
				qstack[top++] = j;
				p = k;
			}
		}
		/* use insertion sort to finish sorting small subarray */
		qkiinss(a,i,p,q);
	}
}

void
qkifind (int m, int n, float a[], int i[])
/*****************************************************************************
Partially sort an array of indices i[] so that the index i[m] has the
value it would have if the entire array of indices were sorted such that 
a[i[0]] <= a[i[1]] <= ... <= a[i[n-1]]
******************************************************************************
Input:
m		index of element to be found
n		number of elements in array a
a		array[n] elements
i		array[n] indices to be partially sorted

Output:
i		array[n] indices partially sorted sorted

*****************************************************************************/
{
	int j,k,p,q;

	/* initialize subarray lower and upper bounds to entire array */
	p = 0;  q = n-1;

	/* while subarray can be partitioned efficiently */
	while(q-p>NSMALL) {

		/* partition subarray into two subarrays */
		qkipart(a,i,p,q,&j,&k);

		/* if desired value is in lower subarray, then */
		if (m<=j)
			q = j;

		/* else, if desired value is in upper subarray, then */
		else if (m>=k)
			p = k;
		
		/* else, desired value is between j and k */
		else
			return;
	}
			
	/* completely sort the small subarray with insertion sort */
	qkiinss(a,i,p,q);
}



/*#define NSTACK 50	 maximum sort length is 2^NSTACK */
/*#define NSMALL 7	 size of array for which insertion sort is fast */
/*#define FM 7875	 constants used to generate random pivots */
/*#define FA 211	*/
/*#define FC 1663	*/


static void
qkpart (float a[], int p, int q, int *j, int *k)
/*****************************************************************************
quicksort partition (FOR INTERNAL USE ONLY):
Take the value x of a random element from the subarray a[p:q] of
a[0:n-1] and rearrange the elements in this subarray in such a way
that there exist integers j and k with the following properties:
  p <= j < k <= q, provided that p < q
  a[l] <= x,  for p <= l <= j
  a[l] == x,  for j < l < k
  a[l] >= x,  for k <= l <= q
Note that this effectively partitions the subarray with bounds
[p:q] into lower and upper subarrays with bounds [p:j] and [k:q].
******************************************************************************
Input:
a		array[p:q] to be rearranged
p		lower bound of subarray; must be less than q
q		upper bound of subarray; must be greater then p

Output:
a		array[p:q] rearranged
j		upper bound of lower output subarray
k		lower bound of upper output subarray

*****************************************************************************/
{
	int pivot,left,right;
	float apivot,temp;
	static long int seed=0L;
 
	/* choose random pivot element between p and q, inclusive */
	seed = (seed*FA+FC)%FM;
	pivot = p+(q-p)*(float)seed/(float)FM;
	if (pivot<p) pivot = p;
	if (pivot>q) pivot = q;
	apivot = a[pivot];

	/* initialize left and right pointers and loop until break */
	for (left=p,right=q;;) {
		/*
		 * increment left pointer until either
		 * (1) an element greater than the pivot element is found, or
		 * (2) the upper bound of the input subarray is reached
		 */
		while (a[left]<=apivot && left<q) left++;
 
		/*
		 * decrement right pointer until either
		 * (1) an element less than the pivot element is found, or
		 * (2) the lower bound of the input subarray is reached
		 */
		while (a[right]>=apivot && right>p) right--;
 
		/* if left pointer is still to the left of right pointer */
		if (left<right) {
			/* exchange left and right elements */
			temp = a[left];
			a[left++] = a[right];
			a[right--] = temp;
		} 
		/* else, if pointers are equal or have crossed, break */
		else break;
	}
	/* if left pointer has not crossed pivot */
	if (left<pivot) {

		/* exchange elements at left and pivot */
		temp = a[left];
		a[left++] = a[pivot];
		a[pivot] = temp;
	}
	/* else, if right pointer has not crossed pivot */
	else if (pivot<right) {

		/* exchange elements at pivot and right */
		temp = a[right];
		a[right--] = a[pivot];
		a[pivot] = temp;
	}
	/* left and right pointers have now crossed; set output bounds */
	*j = right;
	*k = left;
}

static void
qkinss (float a[], int p, int q)
/*****************************************************************************
quicksort insertion sort (FOR INTERNAL USE ONLY):
Sort a subarray bounded by p and q so that
a[p] <= a[p+1] <= ... <= a[q]
******************************************************************************
Input:
a		subarray[p:q] containing elements to be sorted
p		lower bound of subarray; must be less than q
q		upper bound of subarray; must be greater then p

Output:
a		subarray[p:q] sorted

*****************************************************************************/
{
	int i,j;
	float ai;

	for (i=p+1; i<=q; i++) {
		for (ai=a[i],j=i; j>p && a[j-1]>ai; j--)
			a[j] = a[j-1];
		a[j] = ai;
	}
}

void
qksort (int n, float a[])
/*****************************************************************************
Sort an array such that a[0] <= a[1] <= ... <= a[n-1]
******************************************************************************
Input:
n		number of elements in array a
a		array[n] containing elements to be sorted

Output:
a		array[n] containing sorted elements

*****************************************************************************/
{
	int pstack[NSTACK],qstack[NSTACK],j,k,p,q,top=0;

	/* initialize subarray lower and upper bounds to entire array */
	pstack[top] = 0;
	qstack[top++] = n-1;

	/* while subarrays remain to be sorted */
	while(top!=0) {

		/* get a subarray off the stack */
		p = pstack[--top];
		q = qstack[top];

		/* while subarray can be partitioned efficiently */
		while(q-p>NSMALL) {

			/* partition subarray into two subarrays */
			qkpart(a,p,q,&j,&k);

			/* save larger of the two subarrays on stack */
			if (j-p<q-k) {
				pstack[top] = k;
				qstack[top++] = q;
				q = j;
			} else {
				pstack[top] = p;
				qstack[top++] = j;
				p = k;
			}
		}
		/* use insertion sort to finish sorting small subarray */
		qkinss(a,p,q);
	}
}

void
qkfind (int m, int n, float a[])
/*****************************************************************************
Partially sort an array so that the element a[m] has the value it
would have if the entire array were sorted such that 
a[0] <= a[1] <= ... <= a[n-1]
******************************************************************************
Input:
m		index of element to be found
n		number of elements in array a
a		array[n] to be partially sorted

Output:
a		array[n] partially sorted

*****************************************************************************/
{
	int j,k,p,q;

	/* initialize subarray lower and upper bounds to entire array */
	p = 0;  q = n-1;

	/* while subarray can be partitioned efficiently */
	while(q-p>NSMALL) {

		/* partition subarray into two subarrays */
		qkpart(a,p,q,&j,&k);

		/* if desired value is in lower subarray, then */
		if (m<=j)
			q = j;

		/* else, if desired value is in upper subarray, then */
		else if (m>=k)
			p = k;
		
		/* else, desired value is between j and k */
		else
			return;
	}
			
	/* completely sort the small subarray with insertion sort */
	qkinss(a,p,q);
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -