⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 doptions.m

📁 半定规划
💻 M
字号:
%*****************************************************************************% DSDP5:  Dual-Scaling Algorithm for Positive Semidefinite Programming% Copyright (c) 2005 by% S. J. Benson, Y. Ye% Last modified: 05 Feb 2005%*****************************************************************************% [OPTIONS] = doptions;%% This script sets the default options for use in DSDP.%%   The OPTIONS structure may contain any of the following fields: %   Problem Formulation:  %       r0 = multiple of the identity matrix added to the initial dual matrix.%              S0 = C - A'(y0) + r0*I.  If r0 < 0, a dynamic selection will%              be used.  Default value is usually very high(~1e12), but %              smaller numbers may significantly improve performance. IMPORTANT!%              [default -1 (use dynamic strategy, usually very big)].%       zbar = an upper bound for the dual solution.%       penalty  = penalty parameter used to enforce feasibility (>=0)%              This parameter can significantly infuence performance.%              It must be larger than the trace of a solution X:%              See STAT.tracex%       boundy = a bound for the dual variables y. IMPORTANT!%%   Convergence:%       gaptol = tolerance for duality gap as a fraction of the value of the %              objective functions (>=0).%       maxit = maximum number of iterations allowed (>=0).%       steptol = tolerance for stopping due to small steps (>=0).%       pnormtol = terminate only if pnorm less than this number (>0).%       dual_bound = stop solver when the objective (D) of a%                    feasible iterate is greater than this value.%%   Detecting Unboundedness and Infeasibility:%       inftol = maximum infeasibility in (D) allowed at solution.%       infptol = maximum infeasibility in (P) allowed at solution.%%   Printing%       print = k, if want to display result in each k iteration, else = 0.%       logtime = 1, to profile DSDP subroutines, else = 0%              Assumes proper compilation flags.%       cc   = add this constant to the objective value (for display purposes only)%%   Other important options:%       rho    = potential parameter as multiple of dimension.  Larger numbers%                can make the algorithm go faster: [ >1]%                IMPORTANT: Try 5 or 8.%       reuse = reuse Newton matrix this many times (at most) per iteration.  %               Applications requiring few iterations(<60) should consider %               setting this paramter to 0 or 1. %       mu0    = initial barrier parameter (>=0). Smaller numbers may improve %                performance. [-1 implies a dynamic strategy)]%%   Other less important options:%       dyanamicrho = Use dynamic rho strategy to reduce barrier.%       lp_barrier = scale the barrier on LP cones by this amount.%       xmaker = 1 if return y and dy needed to construct X in STAT.xy, STAT.xdy,  STAT.xmu%       maxtrustradius = maximum trust radius (>=0). Decrease to improve robustness.%       bigM  = if > 0,make infeasibility a positive variable with a %               cost in the objective.%*****************************************************************************function [OPTIONS] = doptions();OPTIONS.r0=-1;OPTIONS.penalty=1e8;OPTIONS.boundy=1e7;OPTIONS.zbar=1e10;OPTIONS.maxit=300;OPTIONS.gaptol=0.000001;OPTIONS.print=10;OPTIONS.dual_bound=1e10;OPTIONS.bigM=0;OPTIONS.inftol=1.0e-10;OPTIONS.cc=0;OPTIONS.steptol=1.0e-2;OPTIONS.mu0=-1;OPTIONS.logtime=0;OPTIONS.xmaker=0;OPTIONS.dloginfo=0;OPTIONS.dynamicrho=1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -