⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eostochasticuniversalselect.h

📁 这是linux下的进化计算的源代码。 === === === === === === === === === === === ===== check latest news at http:
💻 H
字号:
// -*- mode: c++; c-indent-level: 4; c++-member-init-indent: 8; comment-column: 35; -*-//-----------------------------------------------------------------------------// eoStochasticUniversalSelect.h// (c) Maarten Keijzer 2003/*    This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA    Contact: todos@geneura.ugr.es, http://geneura.ugr.es             Marc.Schoenauer@polytechnique.fr             mkeijzer@cs.vu.nl *///-----------------------------------------------------------------------------#ifndef eoStochasticUniversalSelect_h#define eoStochasticUniversalSelect_h//-----------------------------------------------------------------------------#include <utils/eoRNG.h>#include <eoSelectOne.h>#include <utils/selectors.h>#include <eoPop.h>//-----------------------------------------------------------------------------/** eoStochasticUniversalSelect: select an individual proportional to her stored fitness    value, but in contrast with eoStochasticUniversalSelect, get rid of most finite sampling effects    by doing all selections in one go, using a single random number.*///-----------------------------------------------------------------------------template <class EOT> class eoStochasticUniversalSelect: public eoSelectOne<EOT>{public:  /// Sanity check  eoStochasticUniversalSelect(const eoPop<EOT>& pop = eoPop<EOT>())  {    if (minimizing_fitness<EOT>())      throw std::logic_error("eoStochasticUniversalSelect: minimizing fitness");  }  void setup(const eoPop<EOT>& _pop)  {      if (_pop.size() == 0) return;      std::vector<typename EOT::Fitness> cumulative(_pop.size());      cumulative[0] = _pop[0].fitness();      for (unsigned i = 1; i < _pop.size(); ++i)      {	  cumulative[i] = _pop[i].fitness() + cumulative[i-1];      }      indices.reserve(_pop.size());      indices.resize(0);      double fortune = rng.uniform() * cumulative.back();      double step = cumulative.back() / double(_pop.size());      unsigned i = std::upper_bound(cumulative.begin(), cumulative.end(), fortune) - cumulative.begin();      while (indices.size() < _pop.size()) {	  while (cumulative[i] < fortune) {i++;} // linear search is good enough as we average one step each time	  indices.push_back(i);	  fortune += step;	  if (fortune >= cumulative.back()) { // start at the beginning	      fortune -= cumulative.back();	      i = 0;	  }      }      // shuffle      for (int i = indices.size() - 1; i > 0; --i) {	  int j = rng.random(i+1);	  std::swap(indices[i], indices[j]);      }  }  /** do the selection,   */  const EOT& operator()(const eoPop<EOT>& _pop)  {      if (indices.empty()) setup(_pop);      unsigned index = indices.back();      indices.pop_back();      return _pop[index];  }private :  typedef std::vector<unsigned> IndexVec;  IndexVec indices;};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -