📄 make_op.h
字号:
// -*- mode: c++; c-indent-level: 4; c++-member-init-indent: 8; comment-column: 35; -*-//-----------------------------------------------------------------------------// make_op.h// (c) Maarten Keijzer, Marc Schoenauer and GeNeura Team, 2001/* This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Contact: todos@geneura.ugr.es, http://geneura.ugr.es Marc.Schoenauer@polytechnique.fr mkeijzer@dhi.dk *///-----------------------------------------------------------------------------#ifndef _make_op_h#define _make_op_h// the operators#include <eoOp.h>#include <eoGenOp.h>#include <eoCloneOps.h>#include <eoOpContainer.h>// combinations of simple eoOps (eoMonOp and eoQuadOp)#include <eoProportionalCombinedOp.h>// the specialized GA stuff#include <ga/eoBit.h>#include <ga/eoBitOp.h> // also need the parser and param includes#include <utils/eoParser.h>#include <utils/eoState.h>/////////////////// bitstring operators ///////////////// canonical (crossover + mutation) only at the moment ///* * This function builds the operators that will be applied to the bitstrings * * It uses a parser (to get user parameters) and a state (to store the memory) * the last argument is an individual, needed for 2 reasons * it disambiguates the call after instanciations * some operator might need some private information about the indis * * This is why the template is the complete EOT even though only the fitness * is actually templatized here: the following only applies to bitstrings * * Note : the last parameter is an eoInit: if some operator needs some info * about the gneotypes, the init has it all (e.g. bounds, ...) * Simply do * EOT myEO; * _init(myEO); * and myEO is then an ACTUAL object*/template <class EOT>eoGenOp<EOT> & do_make_op(eoParser& _parser, eoState& _state, eoInit<EOT>& _init){ // this is a temporary version, while Maarten codes the full tree-structured // general operator input // BTW we must leave that simple version available somehow, as it is the one // that 90% people use! eoValueParam<std::string>& operatorParam = _parser.createParam(std::string("SGA"), "operator", "Description of the operator (SGA only now)", 'o', "Variation Operators"); if (operatorParam.value() != std::string("SGA")) throw std::runtime_error("Only SGA-like operator available right now\n"); // now we read Pcross and Pmut, // the relative weights for all crossovers -> proportional choice // the relative weights for all mutations -> proportional choice // and create the eoGenOp that is exactly // crossover with pcross + mutation with pmut eoValueParam<double>& pCrossParam = _parser.createParam(0.6, "pCross", "Probability of Crossover", 'C', "Variation Operators" ); // minimum check if ( (pCrossParam.value() < 0) || (pCrossParam.value() > 1) ) throw std::runtime_error("Invalid pCross"); eoValueParam<double>& pMutParam = _parser.createParam(0.1, "pMut", "Probability of Mutation", 'M', "Variation Operators" ); // minimum check if ( (pMutParam.value() < 0) || (pMutParam.value() > 1) ) throw std::runtime_error("Invalid pMut"); // the crossovers ///////////////// // the parameters eoValueParam<double>& onePointRateParam = _parser.createParam(double(1.0), "onePointRate", "Relative rate for one point crossover", '1', "Variation Operators" ); // minimum check if ( (onePointRateParam.value() < 0) ) throw std::runtime_error("Invalid onePointRate"); eoValueParam<double>& twoPointsRateParam = _parser.createParam(double(1.0), "twoPointRate", "Relative rate for two point crossover", '2', "Variation Operators" ); // minimum check if ( (twoPointsRateParam.value() < 0) ) throw std::runtime_error("Invalid twoPointsRate"); eoValueParam<double>& uRateParam = _parser.createParam(double(2.0), "uRate", "Relative rate for uniform crossover", 'U', "Variation Operators" ); // minimum check if ( (uRateParam.value() < 0) ) throw std::runtime_error("Invalid uRate"); // minimum check bool bCross = true; if (onePointRateParam.value()+twoPointsRateParam.value()+uRateParam.value()==0) { std::cerr << "Warning: no crossover" << std::endl; bCross = false; } // Create the CombinedQuadOp eoPropCombinedQuadOp<EOT> *ptCombinedQuadOp = NULL; eoQuadOp<EOT> *ptQuad = NULL; // 1-point crossover for bitstring ptQuad = new eo1PtBitXover<EOT>; _state.storeFunctor(ptQuad); ptCombinedQuadOp = new eoPropCombinedQuadOp<EOT>(*ptQuad, onePointRateParam.value()); // uniform crossover for bitstring ptQuad = new eoUBitXover<EOT>; _state.storeFunctor(ptQuad); ptCombinedQuadOp->add(*ptQuad, uRateParam.value()); // 2-points xover ptQuad = new eoNPtsBitXover<EOT>; _state.storeFunctor(ptQuad); ptCombinedQuadOp->add(*ptQuad, twoPointsRateParam.value()); // don't forget to store the CombinedQuadOp _state.storeFunctor(ptCombinedQuadOp); // the mutations ///////////////// // the parameters eoValueParam<double> & pMutPerBitParam = _parser.createParam(0.01, "pMutPerBit", "Probability of flipping 1 bit in bit-flip mutation", 'b', "Variation Operators" ); // minimum check if ( (pMutPerBitParam.value() < 0) || (pMutPerBitParam.value() > 0.5) ) throw std::runtime_error("Invalid pMutPerBit"); eoValueParam<double> & bitFlipRateParam = _parser.createParam(0.01, "bitFlipRate", "Relative rate for bit-flip mutation", 's', "Variation Operators" ); // minimum check if ( (bitFlipRateParam.value() < 0) ) throw std::runtime_error("Invalid bitFlipRate"); eoValueParam<double> & oneBitRateParam = _parser.createParam(0.01, "oneBitRate", "Relative rate for deterministic bit-flip mutation", 'd', "Variation Operators" ); // minimum check if ( (oneBitRateParam.value() < 0) ) throw std::runtime_error("Invalid oneBitRate"); // minimum check bool bMut = true; if (bitFlipRateParam.value()+oneBitRateParam.value()==0) { std::cerr << "Warning: no mutation" << std::endl; bMut = false; } // Create the CombinedMonOp eoPropCombinedMonOp<EOT> *ptCombinedMonOp = NULL; eoMonOp<EOT> *ptMon = NULL; // standard bit-flip mutation for bitstring ptMon = new eoBitMutation<EOT>(pMutPerBitParam.value()); _state.storeFunctor(ptMon); // create the CombinedMonOp ptCombinedMonOp = new eoPropCombinedMonOp<EOT>(*ptMon, bitFlipRateParam.value()); // mutate exactly 1 bit per individual ptMon = new eoDetBitFlip<EOT>; _state.storeFunctor(ptMon); ptCombinedMonOp->add(*ptMon, oneBitRateParam.value()); _state.storeFunctor(ptCombinedMonOp); // now build the eoGenOp: // to simulate SGA (crossover with proba pCross + mutation with proba pMut // we must construct // a sequential combination of // with proba 1, a proportional combination of // a QuadCopy and our crossover // with proba pMut, our mutation // the crossover - with probability pCross eoProportionalOp<EOT> * cross = new eoProportionalOp<EOT> ; _state.storeFunctor(cross); ptQuad = new eoQuadCloneOp<EOT>; _state.storeFunctor(ptQuad); cross->add(*ptCombinedQuadOp, pCrossParam.value()); // user crossover cross->add(*ptQuad, 1-pCrossParam.value()); // clone operator // now the sequential eoSequentialOp<EOT> *op = new eoSequentialOp<EOT>; _state.storeFunctor(op); op->add(*cross, 1.0); // always crossover (but clone with prob 1-pCross op->add(*ptCombinedMonOp, pMutParam.value()); // that's it! return *op;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -