⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eopbiladditive.h

📁 这是linux下的进化计算的源代码。 === === === === === === === === === === === ===== check latest news at http:
💻 H
字号:
// -*- mode: c++; c-indent-level: 4; c++-member-init-indent: 8; comment-column: 35; -*-//-----------------------------------------------------------------------------// eoPBILAdditive.h// (c) Marc Schoenauer, Maarten Keijzer, 2001/*    This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA    Contact: Marc.Schoenauer@polytechnique.fr             mkeijzer@dhi.dk *///-----------------------------------------------------------------------------#ifndef _eoPBILAdditive_H#define _eoPBILAdditive_H#include <eoDistribUpdater.h>#include <ga/eoPBILDistrib.h>/** * Distribution Class for PBIL algorithm *      (Population-Based Incremental Learning, Baluja and Caruana 96) * * This class implements an extended update rule: * in the original paper, the authors used * *  p(i)(t+1) = (1-LR)*p(i)(t) + LR*best(i) * * here the same formula is applied, with some of the best individuals * and for some of the worst individuals (with different learning rates)*/template <class EOT>class eoPBILAdditive :  public eoDistribUpdater<EOT>{public:  /** Ctor with parameters   *  using the default values is equivalent to using eoPBILOrg   */  eoPBILAdditive(double _LRBest, unsigned _nbBest = 1,		double _tolerance=0.0,		double _LRWorst = 0.0, unsigned _nbWorst = 0 ) :    maxBound(1.0-_tolerance), minBound(_tolerance),    LR(0.0), nbBest(_nbBest), nbWorst(_nbWorst)  {    if (nbBest+nbWorst == 0)      throw std::runtime_error("Must update either from best or from worst in eoPBILAdditive");    if (_nbBest)      {	lrb = _LRBest/_nbBest;	LR += _LRBest;      }    else      lrb=0.0;			   // just in case    if (_nbWorst)      {	lrw = _LRWorst/_nbWorst;	LR += _LRWorst;      }    else      lrw=0.0;			   // just in case  }  /** Update the distribution from the current population */  virtual void operator()(eoDistribution<EOT> & _distrib, eoPop<EOT>& _pop)  {    eoPBILDistrib<EOT>& distrib = dynamic_cast<eoPBILDistrib<EOT>&>(_distrib);    std::vector<double> & p = distrib.value();    unsigned i, popSize=_pop.size();    std::vector<const EOT*> result;    _pop.sort(result);	  // is it necessary to sort the whole population?			 // but I'm soooooooo lazy !!!    for (unsigned g=0; g<distrib.size(); g++)      {	p[g] *= (1-LR);		   // relaxation	if (nbBest)		   // update from some of the best	  for (i=0; i<nbBest; i++)	    {	      const EOT & best = (*result[i]);	      if ( best[g] )	   // if 1, increase proba		p[g] +=  lrb;	    }	if (nbWorst)	  for (i=popSize-1; i>=popSize-nbWorst; i--)	    {	      const EOT & best = (*result[i]);	      if ( !best[g] )	   // if 0, increase proba		p[g] +=  lrw;	    }	// stay in [0,1] (possibly strictly due to tolerance)	p[g] = std::min(maxBound, p[g]);	p[g] = std::max(minBound, p[g]);      }  }private:  double maxBound, minBound;    // proba stay away from 0 and 1 by at least tolerance  double LR;           // learning rate  unsigned nbBest;     // number of Best individuals used for update  unsigned nbWorst;    // number of Worse individuals used for update  double lrb, lrw;     // "local" learning rates (see operator())};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -