📄 eopbilorg.h
字号:
// -*- mode: c++; c-indent-level: 4; c++-member-init-indent: 8; comment-column: 35; -*-//-----------------------------------------------------------------------------// eoPBILOrg.h// (c) Marc Schoenauer, Maarten Keijzer, 2001/* This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Contact: Marc.Schoenauer@polytechnique.fr mkeijzer@dhi.dk *///-----------------------------------------------------------------------------#ifndef _eoPBILOrg_H#define _eoPBILOrg_H#include <eoDistribUpdater.h>#include <ga/eoPBILDistrib.h>/** * Distribution Class for PBIL algorithm * (Population-Based Incremental Learning, Baluja and Caruana 95) * * This class implements the update rule from the original paper: * * p(i)(t+1) = (1-LR)*p(i)(t) + LR*best(i)*/template <class EOT>class eoPBILOrg : public eoDistribUpdater<EOT>{public: /** Ctor with size of genomes, and update parameters */ eoPBILOrg(double _LR, double _tolerance=0.0 ) : LR(_LR), maxBound(1.0-_tolerance), minBound(_tolerance) {} /** Update the distribution from the current population */ virtual void operator()(eoDistribution<EOT> & _distrib, eoPop<EOT>& _pop) { const EOT & best = _pop.best_element(); eoPBILDistrib<EOT>& distrib = dynamic_cast<eoPBILDistrib<EOT>&>(_distrib); std::vector<double> & p = distrib.value(); for (unsigned g=0; g<distrib.size(); g++) { // double & r = value()[g]; p[g] *= (1-LR); if ( best[g] ) p[g] += LR; // else nothing // stay away from 0 and 1 p[g] = std::min(maxBound, p[g]); p[g] = std::max(minBound, p[g]); } }private: double LR; // learning rate for best guys double maxBound, minBound; // proba stay away from 0 and 1 by at least tolerance};#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -