⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eopbilorg.h

📁 这是linux下的进化计算的源代码。 === === === === === === === === === === === ===== check latest news at http:
💻 H
字号:
// -*- mode: c++; c-indent-level: 4; c++-member-init-indent: 8; comment-column: 35; -*-//-----------------------------------------------------------------------------// eoPBILOrg.h// (c) Marc Schoenauer, Maarten Keijzer, 2001/*    This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA    Contact: Marc.Schoenauer@polytechnique.fr             mkeijzer@dhi.dk *///-----------------------------------------------------------------------------#ifndef _eoPBILOrg_H#define _eoPBILOrg_H#include <eoDistribUpdater.h>#include <ga/eoPBILDistrib.h>/** * Distribution Class for PBIL algorithm *      (Population-Based Incremental Learning, Baluja and Caruana 95) * * This class implements the update rule from the original paper: * *  p(i)(t+1) = (1-LR)*p(i)(t) + LR*best(i)*/template <class EOT>class eoPBILOrg :  public eoDistribUpdater<EOT>{public:  /** Ctor with size of genomes, and update parameters */  eoPBILOrg(double _LR, double _tolerance=0.0 ) :    LR(_LR), maxBound(1.0-_tolerance), minBound(_tolerance)  {}  /** Update the distribution from the current population */  virtual void operator()(eoDistribution<EOT> & _distrib, eoPop<EOT>& _pop)  {    const EOT & best = _pop.best_element();    eoPBILDistrib<EOT>& distrib = dynamic_cast<eoPBILDistrib<EOT>&>(_distrib);    std::vector<double> & p = distrib.value();    for (unsigned g=0; g<distrib.size(); g++)      {	//	double & r = value()[g];	p[g] *= (1-LR);	if ( best[g] )	  p[g] +=  LR;	// else nothing	// stay away from 0 and 1	p[g] = std::min(maxBound, p[g]);	p[g] = std::max(minBound, p[g]);      }  }private:  double LR;    // learning rate for best guys  double maxBound, minBound;    // proba stay away from 0 and 1 by at least tolerance};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -