📄 make_op.h
字号:
// -*- mode: c++; c-indent-level: 4; c++-member-init-indent: 8; comment-column: 35; -*-//-----------------------------------------------------------------------------// make_op.h - the real-valued version// (c) Maarten Keijzer, Marc Schoenauer and GeNeura Team, 2001/* This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Contact: todos@geneura.ugr.es, http://geneura.ugr.es Marc.Schoenauer@polytechnique.fr mkeijzer@dhi.dk *///-----------------------------------------------------------------------------#ifndef _make_op_h#define _make_op_h// the operators#include <eoOp.h>#include <eoGenOp.h>#include <eoCloneOps.h>#include <eoOpContainer.h>// combinations of simple eoOps (eoMonOp and eoQuadOp)#include <eoProportionalCombinedOp.h>// the specialized Real stuff#include <es/eoReal.h>#include <es/eoRealInitBounded.h>#include <es/eoRealOp.h>#include <es/eoNormalMutation.h> // also need the parser and param includes#include <utils/eoParser.h>#include <utils/eoState.h>/* * This function builds the operators that will be applied to the eoReal * * It uses a parser (to get user parameters) and a state (to store the memory) * the last argument is an individual, needed for 2 reasons * it disambiguates the call after instanciations * some operator might need some private information about the indis * * This is why the template is the complete EOT even though only the fitness * is actually templatized here: the following only applies to bitstrings * * Note : the last parameter is an eoInit: if some operator needs some info * about the gneotypes, the init has it all (e.g. bounds, ...) * Simply do * EOT myEO; * _init(myEO); * and myEO is then an ACTUAL object*/template <class EOT>eoGenOp<EOT> & do_make_op(eoParameterLoader& _parser, eoState& _state, eoInit<EOT>& _init){ // First, decide whether the objective variables are bounded eoValueParam<eoParamParamType>& boundsParam = _parser.getORcreateParam(eoParamParamType("(0,1)"), "objectBounds", "Bounds for variables (unbounded if absent)", 'B', "Genetic Operators"); // get initisalizer size == std::vector size // eoRealInitBounded<EOT> * realInit = (eoRealInitBounded<EOT>*)(&_init); // unsigned vecSize = realInit->theBounds().size(); // get std::vector size: safer??? EOT eoTmp; _init(eoTmp); unsigned vecSize = eoTmp.size(); // the bounds pointer eoRealVectorBounds * ptBounds; if (_parser.isItThere(boundsParam)) // otherwise, no bounds { /////Warning: this code should probably be replaced by creating ///// some eoValueParam<eoRealVectorBounds> with specific implementation //// in eoParser.cpp. At the moemnt, it is there (cf also make_genotype eoParamParamType & ppBounds = boundsParam.value(); // std::pair<std::string,std::vector<std::string> > // transform into a std::vector<double> std::vector<double> v; std::vector<std::string>::iterator it; for (it=ppBounds.second.begin(); it<ppBounds.second.end(); it++) { istrstream is(it->c_str()); double r; is >> r; v.push_back(r); } // now create the eoRealVectorBounds object if (v.size() == 2) // a min and a max for all variables ptBounds = new eoRealVectorBounds(vecSize, v[0], v[1]); else // no time now throw std::runtime_error("Sorry, only unique bounds for all variables implemented at the moment. Come back later"); // we need to give ownership of this pointer to somebody /////////// end of temporary code } else // no param for bounds was given ptBounds = new eoRealVectorNoBounds(vecSize); // DON'T USE eoDummyVectorNoBounds // as it does not have any dimension // this is a temporary version(!), // while Maarten codes the full tree-structured general operator input // BTW we must leave that simple version available somehow, as it is the one // that 90% people use! eoValueParam<std::string>& operatorParam = _parser.getORcreateParam(std::string("SGA"), "operator", "Description of the operator (SGA only now)", 'o', "Genetic Operators"); if (operatorParam.value() != std::string("SGA")) throw std::runtime_error("Sorry, only SGA-like operator available right now\n"); // now we read Pcross and Pmut, // the relative weights for all crossovers -> proportional choice // the relative weights for all mutations -> proportional choice // and create the eoGenOp that is exactly // crossover with pcross + mutation with pmut eoValueParam<double>& pCrossParam = _parser.getORcreateParam(0.6, "pCross", "Probability of Crossover", 'C', "Genetic Operators" ); // minimum check if ( (pCrossParam.value() < 0) || (pCrossParam.value() > 1) ) throw std::runtime_error("Invalid pCross"); eoValueParam<double>& pMutParam = _parser.getORcreateParam(0.1, "pMut", "Probability of Mutation", 'M', "Genetic Operators" ); // minimum check if ( (pMutParam.value() < 0) || (pMutParam.value() > 1) ) throw std::runtime_error("Invalid pMut"); // the crossovers ///////////////// // the parameters eoValueParam<double>& segmentRateParam = _parser.getORcreateParam(double(1.0), "segmentRate", "Relative rate for segment crossover", 's', "Genetic Operators" ); // minimum check if ( (segmentRateParam.value() < 0) ) throw std::runtime_error("Invalid segmentRate"); eoValueParam<double>& arithmeticRateParam = _parser.getORcreateParam(double(2.0), "arithmeticRate", "Relative rate for arithmetic crossover", 'A', "Genetic Operators" ); // minimum check if ( (arithmeticRateParam.value() < 0) ) throw std::runtime_error("Invalid arithmeticRate"); // minimum check bool bCross = true; if (segmentRateParam.value()+arithmeticRateParam.value()==0) { std::cerr << "Warning: no crossover" << std::endl; bCross = false; } // Create the CombinedQuadOp eoPropCombinedQuadOp<EOT> *ptCombinedQuadOp = NULL; eoQuadOp<EOT> *ptQuad = NULL; if (bCross) { // segment crossover for bitstring - pass it the bounds ptQuad = new eoSegmentCrossover<EOT>(*ptBounds); _state.storeFunctor(ptQuad); ptCombinedQuadOp = new eoPropCombinedQuadOp<EOT>(*ptQuad, segmentRateParam.value()); // arithmetic crossover ptQuad = new eoArithmeticCrossover<EOT>(*ptBounds); _state.storeFunctor(ptQuad); ptCombinedQuadOp->add(*ptQuad, arithmeticRateParam.value()); // don't forget to store the CombinedQuadOp _state.storeFunctor(ptCombinedQuadOp); } // the mutations ///////////////// // the parameters eoValueParam<double> & epsilonParam = _parser.getORcreateParam(0.01, "epsilon", "Half-size of interval for Uniform Mutation", 'e', "Genetic Operators" ); // minimum check if ( (epsilonParam.value() < 0) ) throw std::runtime_error("Invalid epsilon"); eoValueParam<double> & uniformMutRateParam = _parser.getORcreateParam(1.0, "uniformMutRate", "Relative rate for uniform mutation", 'u', "Genetic Operators" ); // minimum check if ( (uniformMutRateParam.value() < 0) ) throw std::runtime_error("Invalid uniformMutRate"); eoValueParam<double> & detMutRateParam = _parser.getORcreateParam(1.0, "detMutRate", "Relative rate for deterministic uniform mutation", 'd', "Genetic Operators" ); // minimum check if ( (detMutRateParam.value() < 0) ) throw std::runtime_error("Invalid detMutRate"); eoValueParam<double> & normalMutRateParam = _parser.getORcreateParam(1.0, "normalMutRate", "Relative rate for Gaussian mutation", 'd', "Genetic Operators" ); // minimum check if ( (normalMutRateParam.value() < 0) ) throw std::runtime_error("Invalid normalMutRate"); // and the sigma eoValueParam<double> & sigmaParam = _parser.getORcreateParam(1.0, "sigma", "Sigma (fixed) for Gaussian mutation", 'S', "Genetic Operators" ); // minimum check if ( (sigmaParam.value() < 0) ) throw std::runtime_error("Invalid sigma"); // minimum check bool bMut = true; if (uniformMutRateParam.value()+detMutRateParam.value()+normalMutRateParam.value()==0) { std::cerr << "Warning: no mutation" << std::endl; bMut = false; } if (!bCross && !bMut) throw std::runtime_error("No operator called in SGA operator definition!!!"); // Create the CombinedMonOp eoPropCombinedMonOp<EOT> *ptCombinedMonOp = NULL; eoMonOp<EOT> *ptMon = NULL; if (bMut) { // uniform mutation on all components: // offspring(i) uniformly chosen in [parent(i)-epsilon, parent(i)+epsilon] ptMon = new eoUniformMutation<EOT>(*ptBounds, epsilonParam.value()); _state.storeFunctor(ptMon); // create the CombinedMonOp ptCombinedMonOp = new eoPropCombinedMonOp<EOT>(*ptMon, uniformMutRateParam.value()); // mutate exactly 1 component (uniformly) per individual ptMon = new eoDetUniformMutation<EOT>(*ptBounds, epsilonParam.value()); _state.storeFunctor(ptMon); ptCombinedMonOp->add(*ptMon, detMutRateParam.value()); // mutate all component using Gaussian mutation ptMon = new eoNormalMutation<EOT>(*ptBounds, sigmaParam.value()); _state.storeFunctor(ptMon); ptCombinedMonOp->add(*ptMon, normalMutRateParam.value()); _state.storeFunctor(ptCombinedMonOp); } // now build the eoGenOp: // to simulate SGA (crossover with proba pCross + mutation with proba pMut // we must construct // a sequential combination of // with proba 1, a proportional combination of // a QuadCopy and our crossover // with proba pMut, our mutation // the crossover - with probability pCross eoProportionalOp<EOT> * cross = new eoProportionalOp<EOT> ; _state.storeFunctor(cross); ptQuad = new eoQuadCloneOp<EOT>; _state.storeFunctor(ptQuad); cross->add(*ptCombinedQuadOp, pCrossParam.value()); // user crossover cross->add(*ptQuad, 1-pCrossParam.value()); // clone operator // now the sequential eoSequentialOp<EOT> *op = new eoSequentialOp<EOT>; _state.storeFunctor(op); op->add(*cross, 1.0); // always crossover (but clone with prob 1-pCross op->add(*ptCombinedMonOp, pMutParam.value()); // that's it! return *op;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -