⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 firstrealea.cpp

📁 这是linux下的进化计算的源代码。 === === === === === === === === === === === ===== check latest news at http:
💻 CPP
字号:
//-----------------------------------------------------------------------------// FirstRealEA.cpp//-----------------------------------------------------------------------------//*// Still an instance of a VERY simple Real-coded  Genetic Algorithm// (see FirstBitGA.cpp) but now with  Breeder - and Combined Ops////-----------------------------------------------------------------------------#ifdef HAVE_CONFIG_H#include <config.h>#endif// standard includes#include <stdexcept>  // runtime_error#include <iostream>   // cout// the general include for eo#include <eo>#include <es.h>// REPRESENTATION//-----------------------------------------------------------------------------// define your individualstypedef eoReal<double> Indi;// Use functions from namespace stdusing namespace std;// EVALFUNC//-----------------------------------------------------------------------------// a simple fitness function that computes the euclidian norm of a real vector// Now in a separate file, and declared as binary_value(const vector<bool> &)#include "real_value.h"// GENERAL//-----------------------------------------------------------------------------void main_function(int argc, char **argv){// PARAMETRES  const unsigned int SEED = 42;	// seed for random number generator  const unsigned int T_SIZE = 3; // size for tournament selection  const unsigned int VEC_SIZE = 8; // Number of object variables in genotypes  const unsigned int POP_SIZE = 20; // Size of population  const unsigned int MAX_GEN = 500; // Maximum number of generation before STOP  const unsigned int MIN_GEN = 10;  // Minimum number of generation before ...  const unsigned int STEADY_GEN = 50; // stop after STEADY_GEN gen. without improvelent  const float P_CROSS = 0.8;	// Crossover probability  const float P_MUT = 0.5;	// mutation probability  const double EPSILON = 0.01;	// range for real uniform mutation  double SIGMA = 0.3;       	// std dev. for normal mutation  // some parameters for chosing among different operators  const double hypercubeRate = 0.5;     // relative weight for hypercube Xover  const double segmentRate = 0.5;  // relative weight for segment Xover  const double uniformMutRate = 0.5;  // relative weight for uniform mutation  const double detMutRate = 0.5;      // relative weight for det-uniform mutation  const double normalMutRate = 0.5;   // relative weight for normal mutation// GENERAL  //////////////////////////  //  Random seed  //////////////////////////  //reproducible random seed: if you don't change SEED above,  // you'll aways get the same result, NOT a random run  rng.reseed(SEED);// EVAL  /////////////////////////////  // Fitness function  ////////////////////////////  // Evaluation: from a plain C++ fn to an EvalFunc Object  // you need to give the full description of the function  eoEvalFuncPtr<Indi, double, const vector<double>& > eval(  real_value );// INIT  ////////////////////////////////  // Initilisation of population  ////////////////////////////////  // based on a uniform generator  eoUniformGenerator<double> uGen(-1.0, 1.0);  eoInitFixedLength<Indi> random(VEC_SIZE, uGen);   // Initialization of the population  eoPop<Indi> pop(POP_SIZE, random);  // and evaluate it in one loop  apply<Indi>(eval, pop);	// STL syntax// OUTPUT  // sort pop before printing it!  pop.sort();  // Print (sorted) intial population (raw printout)  cout << "Initial Population" << endl;  cout << pop;// ENGINE  /////////////////////////////////////  // selection and replacement  ////////////////////////////////////// SELECT  // The robust tournament selection  eoDetTournamentSelect<Indi> selectOne(T_SIZE);  // is now encapsulated in a eoSelectPerc (entage)  eoSelectPerc<Indi> select(selectOne);// by default rate==1// REPLACE  // And we now have the full slection/replacement - though with  // no replacement (== generational replacement) at the moment :-)  eoGenerationalReplacement<Indi> replace;// OPERATORS  //////////////////////////////////////  // The variation operators  //////////////////////////////////////// CROSSOVER  // uniform chooce on segment made by the parents  eoSegmentCrossover<Indi> xoverS;  // uniform choice in hypercube built by the parents  eoHypercubeCrossover<Indi> xoverA;  // Combine them with relative weights  eoPropCombinedQuadOp<Indi> xover(xoverS, segmentRate);  xover.add(xoverA, hypercubeRate, true);// MUTATION  // offspring(i) uniformly chosen in [parent(i)-epsilon, parent(i)+epsilon]  eoUniformMutation<Indi>  mutationU(EPSILON);  // k (=1) coordinates of parents are uniformly modified  eoDetUniformMutation<Indi>  mutationD(EPSILON);  // all coordinates of parents are normally modified (stDev SIGMA)  eoNormalMutation<Indi>  mutationN(SIGMA);  // Combine them with relative weights  eoPropCombinedMonOp<Indi> mutation(mutationU, uniformMutRate);  mutation.add(mutationD, detMutRate);  mutation.add(mutationN, normalMutRate, true);// STOP// CHECKPOINT  //////////////////////////////////////  // termination conditions: use more than one  /////////////////////////////////////  // stop after MAX_GEN generations  eoGenContinue<Indi> genCont(MAX_GEN);  // do MIN_GEN gen., then stop after STEADY_GEN gen. without improvement  eoSteadyFitContinue<Indi> steadyCont(MIN_GEN, STEADY_GEN);  // stop when fitness reaches a target (here VEC_SIZE)  eoFitContinue<Indi> fitCont(0);  // do stop when one of the above says so  eoCombinedContinue<Indi> continuator(genCont);  continuator.add(steadyCont);  continuator.add(fitCont);  // The operators are  encapsulated into an eoTRansform object  eoSGATransform<Indi> transform(xover, P_CROSS, mutation, P_MUT);// GENERATION  /////////////////////////////////////////  // the algorithm  ////////////////////////////////////////  // Easy EA requires  // selection, transformation, eval, replacement, and stopping criterion  eoEasyEA<Indi> gga(continuator, eval, select, transform, replace);  // Apply algo to pop - that's it!  cout << "\n        Here we go\n\n";  gga(pop);// OUTPUT  // Print (sorted) intial population  pop.sort();  cout << "FINAL Population\n" << pop << endl;// GENERAL}// A main that catches the exceptionsint main(int argc, char **argv){    try    {        main_function(argc, argv);    }    catch(exception& e)    {        cout << "Exception: " << e.what() << '\n';    }    return 1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -