📄 exercise1.3.cpp
字号:
#ifdef HAVE_CONFIG_H#include <config.h>#endif//-----------------------------------------------------------------------------// FirstBitGA.cpp//-----------------------------------------------------------------------------//*// An instance of a VERY simple Bitstring Genetic Algorithm////-----------------------------------------------------------------------------// standard includes#include <iostream>#include <stdexcept>// the general include for eo#include <eo>//-----------------------------------------------------------------------------// Include the corresponding file#include <ga.h> // bitstring representation & operators// define your individualstypedef eoBit<double> Indi; // A bitstring with fitness doubleusing namespace std;//-----------------------------------------------------------------------------/** a simple fitness function that computes the number of ones of a bitstring @param _indi A biststring individual*/double binary_value(const Indi & _indi){ double sum = 0; for (unsigned i = 0; i < _indi.size(); i++) sum += _indi[i]; return sum;}//-----------------------------------------------------------------------------void main_function(int argc, char **argv){ const unsigned int SEED = 42; // seed for random number generator const unsigned int VEC_SIZE = 8; // Number of bits in genotypes const unsigned int POP_SIZE = 20; // Size of population const unsigned int MAX_GEN = 500; // Maximum number of generation before STOP const float CROSS_RATE = 0.8; // Crossover rate const double P_MUT_PER_BIT = 0.01; // probability of bit-flip mutation const float MUT_RATE = 1.0; // mutation rate ////////////////////////// // Random seed ////////////////////////// //reproducible random seed: if you don't change SEED above, // you'll aways get the same result, NOT a random run rng.reseed(SEED); ///////////////////////////// // Fitness function //////////////////////////// // Evaluation: from a plain C++ fn to an EvalFunc Object eoEvalFuncPtr<Indi> eval( binary_value ); //////////////////////////////// // Initilisation of population //////////////////////////////// // declare the population eoPop<Indi> pop; // fill it! for (unsigned int igeno=0; igeno<POP_SIZE; igeno++) { Indi v; // void individual, to be filled for (unsigned ivar=0; ivar<VEC_SIZE; ivar++) { bool r = rng.flip(); // new value, random in {0,1} v.push_back(r); // append that random value to v } eval(v); // evaluate it pop.push_back(v); // and put it in the population } // sort pop before printing it! pop.sort(); // Print (sorted) intial population (raw printout) cout << "Initial Population" << endl; cout << pop; ///////////////////////////////////// // selection and replacement //////////////////////////////////// // solution solution solution: uncomment one of the following, // comment out the eoDetTournament lines // The well-known roulette // eoProportionalSelect<Indi> select; // could also use stochastic binary tournament selection // // const double RATE = 0.75; // eoStochTournamentSelect<Indi> select(RATE); // RATE in ]0.5,1] // The robust tournament selection const unsigned int T_SIZE = 3; // size for tournament selection eoDetTournamentSelect<Indi> select(T_SIZE); // T_SIZE in [2,POP_SIZE] // and of course the random selection // eoRandomSelect<Indi> select; // The simple GA evolution engine uses generational replacement // so no replacement procedure is needed ////////////////////////////////////// // termination condition ///////////////////////////////////// // stop after MAX_GEN generations eoGenContinue<Indi> continuator(MAX_GEN); ////////////////////////////////////// // The variation operators ////////////////////////////////////// // standard bit-flip mutation for bitstring eoBitMutation<Indi> mutation(P_MUT_PER_BIT); // 1-point mutation for bitstring eo1PtBitXover<Indi> xover; ///////////////////////////////////////// // the algorithm //////////////////////////////////////// // standard Generational GA requires as parameters // selection, evaluation, crossover and mutation, stopping criterion eoSGA<Indi> gga(select, xover, CROSS_RATE, mutation, MUT_RATE, eval, continuator); // Apply algo to pop - that's it! gga(pop); // Print (sorted) intial population pop.sort(); cout << "FINAL Population\n" << pop << endl;}// A main that catches the exceptionsint main(int argc, char **argv){ try { main_function(argc, argv); } catch(exception& e) { cout << "Exception: " << e.what() << '\n'; } return 1;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -