⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 firstrealga.cpp

📁 这是linux下的进化计算的源代码。 === === === === === === === === === === === ===== check latest news at http:
💻 CPP
字号:
//-----------------------------------------------------------------------------// FirstRealGA.cpp//-----------------------------------------------------------------------------//*// An instance of a VERY simple Real-coded Genetic Algorithm////-----------------------------------------------------------------------------#ifdef HAVE_CONFIG_H#include <config.h>#endif#include <stdexcept>#include <iostream>#include <sstream>#include <eo>#include <es.h>// Use functions from namespace stdusing namespace std;// REPRESENTATION//-----------------------------------------------------------------------------// define your individuals typedef eoReal<double> Indi;// EVAL//-----------------------------------------------------------------------------// a simple fitness function that computes the euclidian norm of a real vector//    @param _indi A real-valued individualdouble real_value(const Indi & _indi){  double sum = 0;  for (unsigned i = 0; i < _indi.size(); i++)      sum += _indi[i]*_indi[i];  return (-sum);            // maximizing only}// GENERAL//-----------------------------------------------------------------------------void main_function(int argc, char **argv){// PARAMETRES  // all parameters are hard-coded!  const unsigned int SEED = 42; // seed for random number generator  const unsigned int VEC_SIZE = 8; // Number of object variables in genotypes  const unsigned int POP_SIZE = 20; // Size of population  const unsigned int T_SIZE = 3; // size for tournament selection  const unsigned int MAX_GEN = 500; // Maximum number of generation before STOP  const float CROSS_RATE = 0.8; // Crossover rate  const double EPSILON = 0.01;  // range for real uniform mutation  const float MUT_RATE = 0.5;   // mutation rate// GENERAL  //////////////////////////  //  Random seed  //////////////////////////  //reproducible random seed: if you don't change SEED above,  // you'll aways get the same result, NOT a random run  rng.reseed(SEED);// EVAL  /////////////////////////////  // Fitness function  ////////////////////////////  // Evaluation: from a plain C++ fn to an EvalFunc Object  eoEvalFuncPtr<Indi> eval(  real_value );// INIT  ////////////////////////////////  // Initilisation of population  ////////////////////////////////  // declare the population  eoPop<Indi> pop;  // fill it!  for (unsigned int igeno=0; igeno<POP_SIZE; igeno++)    {      Indi v;          // void individual, to be filled      for (unsigned ivar=0; ivar<VEC_SIZE; ivar++)        {          double r = 2*rng.uniform() - 1; // new value, random in [-1,1)          v.push_back(r);       // append that random value to v        }      eval(v);                  // evaluate it      pop.push_back(v);         // and put it in the population    }// OUTPUT  // sort pop before printing it!  pop.sort();  // Print (sorted) intial population (raw printout)  cout << "Initial Population" << endl;  cout << pop;// ENGINE  /////////////////////////////////////  // selection and replacement  ////////////////////////////////////// SELECT  // The robust tournament selection  eoDetTournamentSelect<Indi> select(T_SIZE);       // T_SIZE in [2,POP_SIZE]// REPLACE  // eoSGA uses generational replacement by default  // so no replacement procedure has to be given// OPERATORS  //////////////////////////////////////  // The variation operators  //////////////////////////////////////// CROSSOVER  // offspring(i) is a linear combination of parent(i)  eoSegmentCrossover<Indi> xover;// MUTATION  // offspring(i) uniformly chosen in [parent(i)-epsilon, parent(i)+epsilon]  eoUniformMutation<Indi>  mutation(EPSILON);// STOP// CHECKPOINT  //////////////////////////////////////  // termination condition  /////////////////////////////////////  // stop after MAX_GEN generations  eoGenContinue<Indi> continuator(MAX_GEN);// GENERATION  /////////////////////////////////////////  // the algorithm  ////////////////////////////////////////  // standard Generational GA requires  // selection, evaluation, crossover and mutation, stopping criterion  eoSGA<Indi> gga(select, xover, CROSS_RATE, mutation, MUT_RATE,                   eval, continuator);  // Apply algo to pop - that's it!  gga(pop);// OUTPUT  // Print (sorted) intial population  pop.sort();  cout << "FINAL Population\n" << pop << endl;// GENERAL}// A main that catches the exceptionsint main(int argc, char **argv){    try    {        main_function(argc, argv);    }    catch(exception& e)    {        cout << "Exception: " << e.what() << '\n';    }    return 1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -