⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 eo.tpl

📁 这是linux下的进化计算的源代码。 === === === === === === === === === === === ===== check latest news at http:
💻 TPL
📖 第 1 页 / 共 2 页
字号:
\TEMPLATE_START// -*- mode: c++; c-indent-level: 2; c++-member-init-indent: 8; comment-column: 35; -*-
//
// (The above line is useful in Emacs-like editors)
//
//*************************************
//
//  EASEA.cpp
//
//  C++ file generated by AESAE-EO v0.7
//
//*************************************
//
//
// Main file for creating a new representation in EO
// =================================================
//
// This main file includes all other files that have been generated by the
// script create.sh, so it is the only file to compile.
//
// In case you want to build up a separate library for your new Evolving Object,
// you'll need some work - follow what's done in the src/ga dir, used in the
// main file BitEA in tutorial/Lesson4 dir.
// Or you can wait until we do it :-)

// Miscellany includes and declarations
#include <iostream>
using namespace std;

// eo general include
#include "eo"
// real bounds (not yet in general eo include)
#include "utils/eoRealVectorBounds.h"

unsigned  *pCurrentGeneration;
unsigned  *pEZ_NB_GEN;
double EZ_MUT_PROB, EZ_XOVER_PROB, EZ_REPL_PERC=0.0;
int EZ_NB_GEN, EZ_POP_SIZE;
unsigned long EZ_NB_EVALUATIONS=0L;

inline int random(int b1=0, int b2=1){
  return rng.random(b2-b1)+b1;
}
inline double random(double b1=0, double b2=1){
  return rng.uniform(b2-b1)+b1;
}
inline float random(float b1=0, float b2=1){
  return rng.uniform(b2-b1)+b1;
}

\ANALYSE_PARAMETERS
\INSERT_USER_DECLARATIONS
\INSERT_INITIALISATION_FUNCTION

// include here whatever specific files for your representation
// Basically, this should include at least the following

/** definition of representation:
 * class EASEAGenome MUST derive from EO<FitT> for some fitness
 */
#include "EASEAGenome.h"

// GENOTYPE   EASEAGenome ***MUST*** be templatized over the fitness

//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// START fitness type: double or eoMaximizingFitness if you are maximizing
//                     eoMinimizingFitness if you are minimizing
typedef \MINIMAXI MyFitT ;  // type of fitness
// END fitness type
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

// Then define your EO objects using that fitness type
typedef EASEAGenome<MyFitT> Indi;      // ***MUST*** derive from EO

\INSERT_USER_FUNCTIONS

/** definition of evaluation:
 * class EASEAEvalFunc MUST derive from eoEvalFunc<EASEAGenome>
 * and should test for validity before doing any computation
 * see tutorial/Templates/evalFunc.tmpl
 */
#include "EASEAEvalFunc.h"

/** definition of initialization:
 * class EASEAGenomeInit MUST derive from eoInit<EASEAGenome>
 */
#include "EASEAInit.h"

/** include all files defining variation operator classes
 */
#include "EASEAMutation.h"
#include "EASEAQuadCrossover.h"

// Use existing modules to define representation independent routines
// These are parser-based definitions of objects

// how to initialize the population
// it IS representation independent if an eoInit is given
#include <make_pop.h>
eoPop<Indi >&  make_pop(eoParser& _parser, eoState& _state, eoInit<Indi> & _init){
  return do_make_pop(_parser, _state, _init);
}

// the stopping criterion
#include "make_continue.h"
eoContinue<Indi>& make_continue(eoParser& _parser, eoState& _state, eoEvalFuncCounter<Indi> & _eval){
  return do_make_continue(_parser, _state, _eval);
}

// outputs (stats, population dumps, ...)
#include <make_checkpoint.h>
eoCheckPoint<Indi>& make_checkpoint(eoParser& _parser, eoState& _state, eoEvalFuncCounter<Indi>& _eval, eoContinue<Indi>& _continue) {
  return do_make_checkpoint(_parser, _state, _eval, _continue);
}

// evolution engine (selection and replacement)
#include <make_algo_easea.h>
eoAlgo<Indi>&  make_algo_scalar(eoParser& _parser, eoState& _state, eoEvalFunc<Indi>& _eval, eoContinue<Indi>& _continue, eoGenOp<Indi>& _op){
  return do_make_algo_scalar(_parser, _state, _eval, _continue, _op);
}

// simple call to the algo. stays there for consistency reasons
// no template for that one
#include <make_run.h>
// the instanciating fitnesses
#include <eoScalarFitness.h>
void run_ea(eoAlgo<Indi>& _ga, eoPop<Indi>& _pop){
  do_run(_ga, _pop);
}

// checks for help demand, and writes the status file
// and make_help; in libutils
void make_help(eoParser & _parser);

// now use all of the above, + representation dependent things
int main(int argc, char* argv[]){

try  {
\INSERT_INIT_FCT_CALL

  eoParser parser(argc, argv);  // for user-parameter reading

  eoState state;    // keeps all things allocated

    // The fitness
    //////////////
   EASEAEvalFunc<Indi> plainEval/* (varType  _anyVariable) */;
   // turn that object into an evaluation counter
   eoEvalFuncCounter<Indi> eval(plainEval);

   // a genotype initializer
   EASEAInit<Indi> init;
   // or, if you need some parameters, you might as well
   // - write a constructor of the eoMyStructInit that uses a parser
   // - call it from here:
   //        eoEASEAInit<Indi> init(parser);


   // Build the variation operator (any seq/prop construct)
   // here, a simple example with only 1 crossover (2->2, a QuadOp) and
   // one mutation, is given.
   // Hints to have choice among multiple crossovers and mutations are given

   // A (first) crossover (possibly use the parser in its Ctor)
   EASEAQuadCrossover<Indi> cross /* (eoParser parser) */;

   // IF MORE THAN ONE:

    // read its relative rate in the combination
// double cross1Rate = parser.createParam(1.0, "cross1Rate", "Relative rate for crossover 1", '1', "Variation Operators").value();

    // create the combined operator with the first one (rename it cross1 !!!)
// eoPropCombinedQuadOp<Indi> cross(cross1, cross1Rate);

    // and as many as you want the following way:
    // 1- write the new class by mimicking eoEASEAQuadCrossover.h
    // 2- include that file here together with eoEASEAQuadCrossover above
    // 3- uncomment and duplicate the following lines:
    //
// eoEASEASecondCrossover<Indi> cross2(eoParser parser);
// double cross2Rate = parser.createParam(1.0, "cross2Rate", "Relative rate for crossover 2", '2', "Variation Operators").value();
// cross.add(cross2, cross2Rate);

  // NOTE: if you want some gentle output, the last one shoudl be like
  //  cross.add(cross, crossXXXRate, true);

    /////////////// Same thing for MUTATION

   // a (first) mutation   (possibly use the parser in its Ctor)
   EASEAMutation<Indi> mut /* (eoParser parser) */;

    // IF MORE THAN ONE:

    // read its relative rate in the combination
// double mut1Rate = parser.createParam(1.0, "mut1Rate", "Relative rate for mutation 1", '1', "Variation Operators").value();

    // create the combined operator with the first one (rename it cross1 !!!)
// eoPropCombinedMonOp<Indi> mut(mut1, mut1Rate);

    // and as many as you want the following way:
    // 1- write the new class by mimicking eoEASEAMutation.h
    // 2- include that file here together with eoEASEAMutation above
    // 3- uncomment and duplicate the following lines:
    //
// eoEASEASecondMutation<Indi> mut2(eoParser parser);
// double mut2Rate = parser.createParam(1.0, "mut2Rate", "Relative rate for mutation 2", '2', "Variation Operators").value();
// mut.add(mut2, mut2Rate);

  // NOTE: if you want some gentle output, the last one shoudl be like
  //  mut.add(mut, mutXXXRate, true);

  // now encapsulate your crossover(s) and mutation(s) into an eoGeneralOp
  // so you can fully benefit of the existing evolution engines

  // First read the individual level parameters
    double pCross = parser.createParam(0.6, "pCross", "Probability of Crossover", 'C', "Variation Operators" ).value();
    // minimum check
    if ( (pCross < 0) || (pCross > 1) )
      throw runtime_error("Invalid pCross");

    double pMut = parser.createParam(0.1, "pMut", "Probability of Mutation", 'M', "Variation Operators" ).value();
    // minimum check
    if ( (pMut < 0) || (pMut > 1) )
      throw runtime_error("Invalid pMut");

    // now create the generalOp
    eoSGAGenOp<Indi> op(cross, pCross, mut, pMut);



  //// Now the representation-independent things
  //
  // YOU SHOULD NOT NEED TO MODIFY ANYTHING BEYOND THIS POINT
  // unless you want to add specific statistics to the checkpoint
  //////////////////////////////////////////////

  // initialize the population
  // yes, this is representation indepedent once you have an eoInit
  eoPop<Indi>& pop   = make_pop(parser, state, init);
  // give popSize to AESAE control
  EZ_POP_SIZE = pop.size();

  // stopping criteria
  eoContinue<Indi> & term = make_continue(parser, state, eval);
  // output
  eoCheckPoint<Indi> & checkpoint = make_checkpoint(parser, state, eval, term);
  // algorithm (need the operator!)
  eoAlgo<Indi>& ga = make_algo_scalar(parser, state, eval, checkpoint, op);

  ///// End of construction of the algorithm

  /////////////////////////////////////////
  // to be called AFTER all parameters have been read!!!
  make_help(parser);

  //// GO
  ///////
  // evaluate intial population AFTER help and status in case it takes time
  apply<Indi>(eval, pop);
  // if you want to print it out
//   cout << "Initial Population\n";
//   pop.sortedPrintOn(cout);
//   cout << endl;

  run_ea(ga, pop); // run the ga

  cout << "Best individual in final population\n";
  cout << pop.best_element() << endl;

  }
  catch(exception& e)
  {
    cout << e.what() << endl;
  }
  return 0;
}

\START_EO_GENOME_H_TPL// -*- mode: c++; c-indent-level: 2; c++-member-init-indent: 8; comment-column: 35; -*-
//
// (The above line is useful in Emacs-like editors)
//
//*************************************
//
//  EASEAGenome.h
//
//  C++ file generated by AESAE-EO v0.7
//
//*************************************
//

#ifndef _EASEAGenome_h
#define _EASEAGenome_h

/**
 *  Always write a comment in this format before class definition
 *  if you want the class to be documented by Doxygen

 * Note that you MUST derive your structure from EO<fitT>
 * but you MAY use some other already prepared class in the hierarchy
 * like eoVector for instance, if you handle a vector of something....

 * If you create a structure from scratch,
 * the only thing you need to provide are
 *        a default constructor
 *        IO routines printOn and readFrom
 *
 * Note that operator<< and operator>> are defined at EO level
 * using these routines
 */
\ANALYSE_USER_CLASSES
\INSERT_USER_CLASSES

template< class FitT>
class EASEAGenome: public EO<FitT> {
public:
  /** Ctor: you MUST provide a default ctor.
   * though such individuals will generally be processed
   * by some eoInit object
   */
  EASEAGenome() : EO<FitT>()
  {
    // START Code of default Ctor of an EASEAGenome object
\GENOME_CTOR
    // END   Code of default Ctor of an EASEAGenome object
  }

  EASEAGenome(const EASEAGenome & arg) : EO<FitT>()
  {
\GENOME_CTOR
    copy(arg);
  }

  virtual ~EASEAGenome()
  {
    // START Code of Destructor of an EASEAGenome object
   \GENOME_DTOR
    // END   Code of Destructor of an EASEAGenome object
  }

  virtual string className() const { return "EASEAGenome"; }

  EASEAGenome& operator=(const EASEAGenome & arg) {
    copy(arg);
    return *this;
  }

  void copy(const EASEAGenome& genome)
  {
    if(&genome != this){
      \GENOME_DTOR
      \COPY_CTOR
      if (genome.invalid()) {	   // copying an invalid genome
	fitness(FitT());	   // put a valid value (i.e. non NAN)
	invalidate();		   // but INVALIDATE the genome
      }
      else
	fitness(genome.fitness());
    }
  }

  bool operator==(const EASEAGenome & genome) const {
    \EQUAL
      return true;
  }

  bool operator!=(const EASEAGenome & genome) const {
    return !(*this==genome);
  }

  /** printing... */
    void printOn(ostream& os) const
    {
      // First write the fitness
        EO<FitT>::printOn(os);
        os << ' ';
    // START Code of default output

  /** HINTS
   * in EO we systematically write the sizes of things before the things
   * so readFrom is easier to code (see below)
   */
\INSERT_DISPLAY
\WRITE
    // END   Code of default output
    }

  /** reading...
   * of course, your readFrom must be able to read what printOn writes!!!
   */
    void readFrom(istream& is)
      {
  // of course you should read the fitness first!
  EO<FitT>::readFrom(is);
    // START Code of input

  /** HINTS
   * remember the EASEAGenome object will come from the default ctor
   * this is why having the sizes written out is useful
   */
\READ
    // END   Code of input
      }

  //private:         // put all data here - no privacy in EASEA
    // START Private data of an EASEAGenome object
\INSERT_GENOME
    // END   Private data of an EASEAGenome object
};
#endif

\START_EO_EVAL_TPL// -*- mode: c++; c-indent-level: 2; c++-member-init-indent: 8; comment-column: 35; -*-
//
// (The above line is useful in Emacs-like editors)
//
//*************************************
//
//  EASEAEvalFunc.h
//
//  C++ file generated by AESAE-EO v0.7
//
//*************************************
//

/*
Evaluator in EO: a functor that computes the fitness of an EO
=============================================================
*/

#ifndef _EASEAEvalFunc_h
#define _EASEAEvalFunc_h

// include whatever general include you need
#include <stdexcept>
#include <fstream>

// include the base definition of eoEvalFunc
#include "eoEvalFunc.h"

/**
  Always write a comment in this format before class definition
  if you want the class to be documented by Doxygen
*/
template <class EOT>
class EASEAEvalFunc : public eoEvalFunc<EOT>
{
public:
  /// Ctor - no requirement
// START eventually add or modify the anyVariable argument
  EASEAEvalFunc()
  //  EASEAEvalFunc( varType  _anyVariable) : anyVariable(_anyVariable)
// END eventually add or modify the anyVariable argument
  {
    // START Code of Ctor of an EASEAEvalFunc object
    // END   Code of Ctor of an EASEAEvalFunc object
  }

  /** Actually compute the fitness
   *
   * @param EOT & _eo the EO object to evaluate
   *                  it should stay templatized to be usable
   *                  with any fitness type
   */
  void operator()(EOT & genome)
  {
    // test for invalid to avoid recomputing fitness of unmodified individuals
    if (genome.invalid())
      {
    // START Code of computation of fitness of the EASEA object
\INSERT_EVALUATOR
    // END   Code of computation of fitness of the EASEA object
      }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -