📄 dct.c
字号:
return 0; #endif}/********************************************************************** * * Name: Scan and Descan * Description: Does scanning of the an 8x8 block quantized dct * coefficients. * (zigzag, or alernate horizontal, alternate * vertical when advanced intra coding is used) * * Input: 64 quantized coefficients in a 1D array * Returns: 0 * Side effects: scans the dct qcoeff in the desired order * (zigzag if advanced intra coding is not used) * * Date: 970716 * Author: Guy Cote <guyc@ee.ubc.ca> * **********************************************************************/void Scan (int *qcoeff, int Intra_Mode){ int i, j, k; int store_qcoeff[384]; /* Zigzag - scanning of a Macroblock */ /* Choose Scanning if Advanced Intra Coding Mode is used */ for (i = 0; i < 384; i++) { store_qcoeff[i] = *(qcoeff + i); } for (k = 0; k < 6; k++) { /* Do for all blocks */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { if (advanced_intra_coding) { switch (Intra_Mode) { case INTRA_MODE_DC: *(qcoeff + zigzag[i][j] + k * 64) = (int) (store_qcoeff[i * 8 + j + k * 64]); break; case INTRA_MODE_VERT_AC: *(qcoeff + alternate_horizontal[i][j] + k * 64) = (int) (store_qcoeff[i * 8 + j + k * 64]); break; case INTRA_MODE_HORI_AC: *(qcoeff + alternate_vertical[i][j] + k * 64) = (int) (store_qcoeff[i * 8 + j + k * 64]); break; default: printf ("Invalid Intra_Mode in Advanced Intra Coding"); exit (-1); break; } } else { *(qcoeff + zigzag[i][j] + k * 64) = (int) (store_qcoeff[i * 8 + j + k * 64]); } } } } return;}void DeScan (int *qcoeff, int Intra_Mode){ /* Descan coefficients first */ /* Choose Scanning if Advanced Intra Coding Mode is used */ int store_qcoeff[384]; int i, j, k; for (i = 0; i < 384; i++) { store_qcoeff[i] = *(qcoeff + i); } for (k = 0; k < 6; k++) { /* Do for all blocks */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { if (advanced_intra_coding) { /* Descan with proper scanning matrix */ switch (Intra_Mode) { case INTRA_MODE_DC: *(qcoeff + k * 64 + i * 8 + j) = *(store_qcoeff + k * 64 + zigzag[i][j]); break; case INTRA_MODE_VERT_AC: *(qcoeff + k * 64 + i * 8 + j) = *(store_qcoeff + k * 64 + alternate_horizontal[i][j]); break; case INTRA_MODE_HORI_AC: *(qcoeff + k * 64 + i * 8 + j) = *(store_qcoeff + k * 64 + alternate_vertical[i][j]); break; default: printf ("Invalid Intra_Mode in Advanced Intra Coding\n"); exit (-1); break; } } else { *(qcoeff + k * 64 + i * 8 + j) = *(store_qcoeff + k * 64 + zigzag[i][j]); } } } } return;}#ifdef FASTIDCT/********************************************************************** * * Name: idct * Description: inverse dct on 64 coefficients * single precision floats * * Input: 64 coefficients, block for 64 pixels * Returns: 0 * Side effects: * * Date: 930128 Author: Robert.Danielsen@nta.no * **********************************************************************/int idct (int *coeff, int *block){ int j1, i, j; double b[8], b1[8], d[8][8]; double f0 = .7071068; double f1 = .4903926; double f2 = .4619398; double f3 = .4157348; double f4 = .3535534; double f5 = .2777851; double f6 = .1913417; double f7 = .0975452; double e, f, g, h; /* Horizontal */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) b[j] = coeff[j + i * 8]; e = b[1] * f7 - b[7] * f1; h = b[7] * f7 + b[1] * f1; f = b[5] * f3 - b[3] * f5; g = b[3] * f3 + b[5] * f5; b1[0] = (b[0] + b[4]) * f4; b1[1] = (b[0] - b[4]) * f4; b1[2] = b[2] * f6 - b[6] * f2; b1[3] = b[6] * f6 + b[2] * f2; b[4] = e + f; b1[5] = e - f; b1[6] = h - g; b[7] = h + g; b[5] = (b1[6] - b1[5]) * f0; b[6] = (b1[6] + b1[5]) * f0; b[0] = b1[0] + b1[3]; b[1] = b1[1] + b1[2]; b[2] = b1[1] - b1[2]; b[3] = b1[0] - b1[3]; for (j = 0; j < 4; j++) { j1 = 7 - j; d[i][j] = b[j] + b[j1]; d[i][j1] = b[j] - b[j1]; } } /* Vertical */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { b[j] = d[j][i]; } e = b[1] * f7 - b[7] * f1; h = b[7] * f7 + b[1] * f1; f = b[5] * f3 - b[3] * f5; g = b[3] * f3 + b[5] * f5; b1[0] = (b[0] + b[4]) * f4; b1[1] = (b[0] - b[4]) * f4; b1[2] = b[2] * f6 - b[6] * f2; b1[3] = b[6] * f6 + b[2] * f2; b[4] = e + f; b1[5] = e - f; b1[6] = h - g; b[7] = h + g; b[5] = (b1[6] - b1[5]) * f0; b[6] = (b1[6] + b1[5]) * f0; b[0] = b1[0] + b1[3]; b[1] = b1[1] + b1[2]; b[2] = b1[1] - b1[2]; b[3] = b1[0] - b1[3]; for (j = 0; j < 4; j++) { j1 = 7 - j; d[j][i] = b[j] + b[j1]; d[j1][i] = b[j] - b[j1]; } } for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { *(block + i * 8 + j) = mnint (d[i][j]); } } return 0;}#else/* Perform IEEE 1180 reference (64-bit floating point, separable 8x1 * direct matrix multiply) Inverse Discrete Cosine Transform *//* Here we use math.h to generate constants. Compiler results may vary a * little *//* private data *//* cosine transform matrix for 8x1 IDCT */static double c[8][8];/* initialize DCT coefficient matrix */void init_idctref (){ int freq, time; double scale; for (freq = 0; freq < 8; freq++) { scale = (freq == 0) ? sqrt (0.125) : 0.5; for (time = 0; time < 8; time++) c[freq][time] = scale * cos ((PI / 8.0) * freq * (time + 0.5)); }}/* perform IDCT matrix multiply for 8x8 coefficient block */void idctref (int *coeff, int *block){#if 1 static int *blk; int i; static long X0, X1, X2, X3, X4, X5, X6, X7, X8; iclp = iclip + 512; for (i = -512; i < 512; i++) iclp[i] = (i < -256) ? -256 : ((i > 255) ? 255 : i); for (i = 0; i < 8; i++) /* idct rows */ { blk = coeff + (i << 3); if (!((X1 = blk[4] << 11) | (X2 = blk[6]) | (X3 = blk[2]) | (X4 =blk[1]) | (X5 = blk[7]) | (X6 = blk[5]) | (X7 = blk[3]))) { blk[0] = blk[1] = blk[2] = blk[3] = blk[4] = blk[5] = blk[6] = blk[7] = blk[0] << 3; continue; } X0 = (blk[0] << 11) + 128; /* for proper rounding in the fourth stage */ /* first stage */ X8 = W7 * (X4 + X5); X4 = X8 + (W1 - W7) * X4; X5 = X8 - (W1 + W7) * X5; X8 = W3 * (X6 + X7); X6 = X8 - (W3 - W5) * X6; X7 = X8 - (W3 + W5) * X7; /* second stage */ X8 = X0 + X1; X0 -= X1; X1 = W6 * (X3 + X2); X2 = X1 - (W2 + W6) * X2; X3 = X1 + (W2 - W6) * X3; X1 = X4 + X6; X4 -= X6; X6 = X5 + X7; X5 -= X7; /* third stage */ X7 = X8 + X3; X8 -= X3; X3 = X0 + X2; X0 -= X2; X2 = (181 * (X4 + X5) + 128) >> 8; X4 = (181 * (X4 - X5) + 128) >> 8; /* fourth stage */ blk[0] = (int) ((X7 + X1) >> 8); blk[1] = (int) ((X3 + X2) >> 8); blk[2] = (int) ((X0 + X4) >> 8); blk[3] = (int) ((X8 + X6) >> 8); blk[4] = (int) ((X8 - X6) >> 8); blk[5] = (int) ((X0 - X4) >> 8); blk[6] = (int) ((X3 - X2) >> 8); blk[7] = (int) ((X7 - X1) >> 8); } /* end for ( i = 0; i < 8; ++i ) IDCT-rows */ for (i = 0; i < 8; i++) /* idct columns */ { blk = coeff + i; /* shortcut */ if (! ((X1 = (blk[8 * 4] << 8)) | (X2 = blk[8 * 6]) | (X3 = blk[8 * 2]) | (X4 = blk[8 * 1]) | (X5 = blk[8 * 7]) | (X6 = blk[8 * 5]) | (X7 = blk[8 * 3]))) { blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3] = blk[8 * 4] = blk[8 * 5] = blk[8 * 6] = blk[8 * 7] = iclp[(blk[8 * 0] + 32) >> 6]; continue; } X0 = (blk[8 * 0] << 8) + 8192; /* first stage */ X8 = W7 * (X4 + X5) + 4; X4 = (X8 + (W1 - W7) * X4) >> 3; X5 = (X8 - (W1 + W7) * X5) >> 3; X8 = W3 * (X6 + X7) + 4; X6 = (X8 - (W3 - W5) * X6) >> 3; X7 = (X8 - (W3 + W5) * X7) >> 3; /* second stage */ X8 = X0 + X1; X0 -= X1; X1 = W6 * (X3 + X2) + 4; X2 = (X1 - (W2 + W6) * X2) >> 3; X3 = (X1 + (W2 - W6) * X3) >> 3; X1 = X4 + X6; X4 -= X6; X6 = X5 + X7; X5 -= X7; /* third stage */ X7 = X8 + X3; X8 -= X3; X3 = X0 + X2; X0 -= X2; X2 = (181 * (X4 + X5) + 128) >> 8; X4 = (181 * (X4 - X5) + 128) >> 8; /* fourth stage */ blk[8 * 0] = iclp[(X7 + X1) >> 14]; blk[8 * 1] = iclp[(X3 + X2) >> 14]; blk[8 * 2] = iclp[(X0 + X4) >> 14]; blk[8 * 3] = iclp[(X8 + X6) >> 14]; blk[8 * 4] = iclp[(X8 - X6) >> 14]; blk[8 * 5] = iclp[(X0 - X4) >> 14]; blk[8 * 6] = iclp[(X3 - X2) >> 14]; blk[8 * 7] = iclp[(X7 - X1) >> 14]; } for(i = 0; i<64;i++) block[i] = coeff[i]; return ;#else int i, j, k, v; double partial_product; double tmp[64]; int tmp2[64]; for (i = 0; i < 8; i++) for (j = 0; j < 8; j++) tmp2[j + i * 8] = coeff[j + i * 8]; for (i = 0; i < 8; i++) for (j = 0; j < 8; j++) { partial_product = 0.0; for (k = 0; k < 8; k++) partial_product += c[k][j] * tmp2[8 * i + k]; tmp[8 * i + j] = partial_product; } /* Transpose operation is integrated into address mapping by switching * loop order of i and j */ for (j = 0; j < 8; j++) for (i = 0; i < 8; i++) { partial_product = 0.0; for (k = 0; k < 8; k++) partial_product += c[k][i] * tmp[8 * k + j]; v = (int) floor (partial_product + 0.5); block[8 * i + j] = (v < -256) ? -256 : ((v > 255) ? 255 : v); }#endif}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -