📄 g_fir.m
字号:
% G_FIR: GUI module for FIR filter design
%
% Usage: g_fir
%
% Version: 1.0
%
% Description:
% This graphical user interface module is used
% to interactively investigate the design of FIR
% digital filters. The design methods include
% windowed (rectangular, Hanning, Hamming,
% Blackman), frequency-sampled, least-squares,
% and optimal equiripple. The filter types
% include lowpass, highpass, bandpass, bandstop,
% and general. All filters are linear-phase
% filters.
% Edit window:
% F_0 = lower cutoff frequency
% F_1 = upper cutoff frequency
% B = transition bandwidth
% delta_p = passband ripple
% delta_s = stopband attenuation
% Type window:
% Lowpass filter
% Highpass filter
% Bandpass filter
% Bandstop filter
% User-defined filter
% View window:
% Magnitude response
% Phase response
% Impulse response
% Pole-zero plot
% Window
% Checkboxes:
% dB display
% Slider bar:
% FIR filter order: m
% Menu bar:
% Method option
% Save option: x,y,a,b,fs
% Caliper option
% Print option
% Help option
% See also:
% F_DSP G_SAMPLE G_RECONSTRUCT G_SYSTEM
% G_SPECTRA G_CORRELATE G_FILTERS G_MULTIRATE
% G_IIR G_ADAPT
% Programming notes:
% Check MATLAB Version
if (f_oldmat)
return
end
% Initialize
clc
clear all
pv = 1; % plot view
fs = 2000; % sampling frequency
F_0 = 300; % lower cutoff frequency
F_1 = 600; % upper cutoff frequency
B = 50; % transition bandwidth
delta_p = 0.05; % passband ripple (linear)
delta_s = 0.1; % stopband ripple (linear)
A_p =-20*log10(1-delta_p); % passband ripple (dB)
A_s =-20*log10(delta_s); % stopband ripple (dB)
m = 40; % filter order
m_min = 2; % minimum filter order
m_max = 256; % maximum filter order
dB = 0; % linear plots (1 = log)
fs_min = 1; % minimum sampling frequency
fs_max = 44100; % maximum sampling frequency
method = 5; % filter design method
win = 1; % window type (0 to 3)
xm = 3; % fitler type
xm_old = xm; % previous xm
a = 1; % denominator
b = [1 1]; % numerator
white = [1 1 1];
M = 1000;
x = f_randu(M,1,-1,1);
y = filter(b,a,x);
% Strings
userinput = 'u_fir1'; % default M-file function specifying desired amplitude response
useroutput = 'u_fir1.mat'; % default MAT-file for saving data
inputstr = ['[b,a,m,fs,x,y,userinput,xm,xm_old] = '...
'f_getfir (xm,xm_old,fs,F_0,F_1,B,delta_p,delta_s,m,method,win,userinput,b,a,x,y,hc_type); '];
plotstr = 'f_plotfir (pv,han,fs,hc_dB,a,b,xm,method,win,F_0,F_1,B,delta_p,delta_s,userinput,fsize); ';
barstr = 'f_showslider (hc_m,han,m,'''',1); ';
g_module = 'g_fir';
drawstr = 'f_drawfilt (han(1),colors,fsize); ';
% Create figure window with tiled axes
[hf_1,han,pos,colors,fsize] = f_guifigure (g_module);
% Add menu options
hm_fir = f_firmenu (inputstr,plotstr,method,'Method');
hm_save = f_savemenu (useroutput,'','Save data');
f_calmenu (plotstr)
f_printmenu (han,drawstr)
f_helpmenu ('f_tipsfir',g_module)
f_exitmenu
% Draw block diagram
eval(drawstr)
% Edit boxes
axes (han(2))
cback = [inputstr plotstr];
hc_F0 = f_editbox (F_0,0,fs/2,pos(2,:),3,1,1,colors(2,:),white,cback,'Lower cutoff frequency',fsize);
hc_F1 = f_editbox (F_1,F_0,fs/2,pos(2,:),3,2,1,colors(2,:),white,cback,'Upper cutoff frequency',fsize);
hc_B = f_editbox (B,0,B,pos(2,:),3,3,1,colors(2,:),white,cback,'Transition bandwidth',fsize);
hc_fs = f_editbox (fs,fs_min,fs_max,pos(2,:),3,1,2,colors(1,:),white,cback,'Sampling frequency',fsize);
cback5b = ['if dB == 0, '...
' eval(get(hc_delta_p,''String'')),delta_p = f_clip(delta_p,0,1);'...
' A_p = -20*log10(1 - delta_p);'...
'else, '...
' eval(get(hc_delta_p,''String'')),A_p = f_clip(A_p,0,A_p);'...
' delta_p = 1 - 10^(-A_p/20);'...
'end; '];
hc_delta_p = f_editbox (delta_p,0,1,pos(2,:),3,2,2,colors(2,:),...
white,[cback5b inputstr plotstr],'Passband ripple',fsize);
cback6b = ['if dB == 0, '...
' eval(get(hc_delta_s,''String'')),delta_s = f_clip(delta_s,0,1);'...
' A_s = -20*log10(delta_s);'...
'else, '...
' eval(get(hc_delta_s,''String'')),A_s = f_clip(A_s,0,A_s);'...
' delta_s = 10^(-A_s/20);'...
'end; '];
hc_delta_s = f_editbox (delta_s,0,1,pos(2,:),3,3,2,colors(2,:),...
white,[cback6b inputstr plotstr],'Stopband attenuation',fsize);
% Select filter type
nt = 5;
labels = {'Lowpass','Highpass','Bandpass','Bandstop','User-defined'};
cstr = ['if method == 6, '...
' method = 5; '...
'end, '...
'for i = 0 : 6, '...
' if i == method, '...
' set(hm_fir(i+2),''Checked'',''on''), '...
' else, '...
' set(hm_fir(i+2),''Checked'',''off''), '...
' end, '...
'end, '...
];
tipstrs = {'Lowpass filter','Highpass filter','Bandpass filter','Bandstop filter','Load a,b,fs'};
cback = {[inputstr barstr plotstr],...
[inputstr barstr plotstr],...
[inputstr barstr plotstr],...
[inputstr barstr plotstr],...
[inputstr barstr plotstr]};
[hc_type,userinput] = f_typebuttons (pos(3,:),nt,xm,labels,colors(1,:),white,cback,userinput,tipstrs,nt,fsize);
% Select view
nv = 5;
labels = {'Magnitude response','Phase response','Impulse response','Pole-zero plot','Window'};
cback = {plotstr,plotstr,plotstr,plotstr,plotstr};
fcolors = {colors(2,:),colors(2,:),colors(2,:),colors(2,:),colors(2,:)};
tipstrs = {'Plot A(f)','Plot phi(f)','Plot h(k)','Plot pole-zero pattern','Plot window w(k)'};
hc_view = f_viewbuttons (pos(4,:),nv,pv,labels,fcolors,white,cback,tipstrs,nv+1,fsize);
% Check boxes
cbackdB = ['dB = get (hc_dB,''Value''); '...
'if dB,'...
' set(hc_dB,''Value'',1),'...
' eval(get(hc_delta_p,''String'')),'...
' eval(get(hc_delta_s,''String'')),'...
' A_p = -20*log10(1 - delta_p);'...
' A_s = -20*log10(delta_s);'...
' set(hc_delta_p,''String'',[''A_p = '',mat2str(A_p,3),'';'']),'...
' set(hc_delta_s,''String'',[''A_s = '',mat2str(A_s,3),'';'']),'...
'else,'...
' set(hc_dB,''Value'',0),'...
' eval(get(hc_delta_p,''String'')),'...
' eval(get(hc_delta_s,''String'')),'...
' set(hc_dB,''Value'',0),'...
' delta_p = 1 - 10^(-A_p/20);'...
' delta_s = 10^(-A_s/20);'...
' set(hc_delta_p,''String'',[''delta_p = '',mat2str(delta_p,3),'';'']),'...
' set(hc_delta_s,''String'',[''delta_s = '',mat2str(delta_s,3),'';'']),'...
'end; '];
hc_dB = f_checkbox (dB,pos(4,:),nv+1,1,nv+1,1,'dB display',colors(3,:),...
white,[cbackdB inputstr plotstr],'Toggle dB display',fsize);
% Filter order slider
dv = 1;
tipstr = 'Adjust FIR filter order m';
cback = [inputstr barstr plotstr];
hc_m = f_slider (m,m_min,m_max,pos(5,:),colors(2,:),'y',cback,tipstr,dv,'',fsize);
% Compute initial filter
eval (inputstr);
% Create plot
eval (plotstr)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -