⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 f_rls.asv

📁 digital signal processing常用工具箱
💻 ASV
字号:
function [w,e] = f_rls (x,d,m,gamma,delta,w)

%F_RLS: Identify system using recursive least squares (RLS) method
%
% Usage: [w,e] = f_lms (x,d,m,gamma,delta,w)
%
% Description: Identify the parameters an mth order adaptive 
%              transversal (FIR) filter using the RLS method.
%              The filter output is
%
%              y(k) = w(1)x(k) + w(2)x(k-1) + ... + w(m+1)x(k-m)
%
%
% Inputs:      x      = N by 1 vector containing input samples
%              d      = N by 1 vector containing desired output samples
%              m      = order of transversal filter (m >= 0)
%              gamma  = forgetting factor (0+ to 1)
%              delta  = regularization parameter (delta > 0, default P_x)
%              w      = initial values of the weights (default: w = 0)
%
% Outputs      w = (m+1) by 1 weight vector of filter coefficients
%              e = an optional N by 1 vector of errors where 
%                  e(k) = d(k)-y(k)
%
% Notes:       As the SNR of x decreases, delta should be increased.
%-----------------------------------------------------------------------
   
% Initialize

m = f_clip (m,0,m);
N = length(x);
gamma  = f_clip (gamma,eps,1);
if (nargin > 4) & (delta ~= [])
    delta = f_clip (delta,eps,delta);
else
    delta = sum(x.^2)/N;
end
if nargin < 6
    w =  zeros(m+1,1);
end
if nargout > 1
   e = zeros(N,1);
end
theta = zeros(m+1,1);
Q = (1/delta)*eye(m+1,m+1);
p = zeros(m+1,1);
r = zeros(m+1,1);

% Find optimal weight vector

for k = 1 : N
   if k < (m+1)
       theta(1:k) = x(k:-1:1);
   else
       theta(1:m+1) = x(k:-1:k-m);
   end
   r = Q*theta;
   c = gamma + theta'*r;
   p = gamma*p + d(k)*theta;
   Q = (1/gamma)*(Q - r*r'/c);
   w = Q*p;
   if nargout > 1
       e(k) = d(k) - w'*theta;
   end

end
%-----------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -