📄 g_iir.m
字号:
% G_IIR: GUI module for IIR filter design
%
% Usage: g_iir
%
% Version: 1.0
%
% Description:
% This graphical user interface module is used
% to interactively investigate the design of IIR
% digital filters. The design methods are based
% on bilinear transformations of the classical
% analog filters (Butterworth, Chebyshev-I,
% Chebyshev-II, and elliptic).The frequency-
% selective filter types include lowpass,
% highpass, bandpass, and bandstop filters.
% Edit window:
% F_0 = lower cutoff frequency
% F_1 = upper cutoff frequency
% B = transition bandwidth
% delta_p = passband ripple
% delta_s = stopband attenuation
% Type window:
% Resonator filter
% Notch filter
% Lowpass filter
% Highpass filter
% Bandpass filter
% Bandstop filter
% User-defined filter
% View window:
% Magnitude response
% Phase response
% Pole-zero plot
% Impulse response
% Window
% Checkboxes:
% dB display
% Slider bar:
% IIR filter order: m
% Menu bar:
% Prototype option
% Save option: x,y,a,b,fs
% Caliper option
% Print option
% Help option
% See also:
% F_DSP G_SAMPLE G_RECONSTRUCT G_SYSTEM
% G_SPECTRA G_CORRELATE G_FILTERS G_FIR
% G_MULTIRATE G_ADAPT
% Programming notes:
%1) Have n_max depend or filter type?
% Check MATLAB Version
if (f_oldmat)
return
end
% Initialize
clc
clear all
pv = 1; % plot view
fs = 2000; % sampling frequency
n = 8; % IIR filter order
n_min = 1; % minimum filter order
n_max = 24; % maximum filter order
dB = 0; % linear plots (1 = log)
fs_min = 1; % minimum sampling frequency
fs_max = 1.e6; % maximum sampling frequency
F_0 = .2*fs; % lower cutoff frequency
F_1 = .3*fs; % upper cutoff frequency
B = 100; % transition bandwidth
delta_p = 0.1; % passband ripple (linear)
delta_s = 0.1; % stopband ripple (linear)
A_p =-20*log10(1-delta_p); % passband ripple (dB)
A_s =-20*log10(delta_s); % stopband ripple (dB)
xm = 5; % fitler type
xm_old = xm; % previous xm
proto = 2; % analog prototype filter
order = 1; % filter order switch (0 = automatic,1 = adjustable)
a = [1 0 .8]; % denominator
b = [1 .6 -1]; % numerator
cq = 0; % coefficient quantization switch
white = [1 1 1];
M = 1000;
x = f_randu(M,1,-1,1);
y = filter(b,a,M);
% Strings
userinput = 'u_iir1.mat'; % default MAT file for saving a,b,fs
inputstr = ['[b,a,n,fs,x,y,userinput,xm,xm_old] = '...
'f_getiir (xm,xm_old,fs,F_0,F_1,B,delta_p,delta_s,proto,b,a,x,y,userinput,n,hc_type); '];
plotstr = 'f_plotiir (pv,han,fs,F_0,F_1,B,delta_p,delta_s,hc_dB,a,b,xm,proto,n,userinput,fsize); ';
barstr = 'f_showslider (hc_n,han,n,'''',1); ';
g_module = 'g_iir';
drawstr = 'f_drawfilt (han(1),colors,fsize); ';
% Create figure window with tiled axes
[hf_1,han,pos,colors,fsize] = f_guifigure (g_module);
% Add menu options
hm_iir = f_iirmenu (inputstr,plotstr,proto);
hm_save = f_savemenu (userinput,'','Save data');
f_calmenu (plotstr)
f_printmenu (han,drawstr)
f_helpmenu ('f_tipsiir',g_module)
f_exitmenu
% Draw block diagram
eval(drawstr)
% Edit boxes
axes (han(2))
cback = [inputstr plotstr];
hc_F0 = f_editbox (F_0,0,fs/2,pos(2,:),3,1,1,colors(2,:),white,cback,'Lower cutoff frequency',fsize);
hc_F1 = f_editbox (F_1,F_0,fs/2,pos(2,:),3,2,1,colors(2,:),white,cback,'Upper cutoff frequency',fsize);
hc_B = f_editbox (B,0,B,pos(2,:),3,3,1,colors(2,:),white,cback,'Transition bandwidth',fsize);
hc_fs = f_editbox (fs,fs_min,fs_max,pos(2,:),3,1,2,colors(1,:),white,cback,'Sampling frequency',fsize);
cback5b = ['if dB == 0, '...
' eval(get(hc_delta_p,''String'')),delta_p = f_clip(delta_p,0,1);'...
' A_p = -20*log10(1 - delta_p);'...
'else, '...
' eval(get(hc_delta_p,''String'')),A_p = f_clip(A_p,0,A_p);'...
' delta_p = 1 - 10^(-A_p/20);'...
'end; '];
hc_delta_p = f_editbox (delta_p,0,1,pos(2,:),3,2,2,colors(2,:),...
white,[cback5b inputstr plotstr],'Passband ripple',fsize);
cback6b = ['if dB == 0, '...
' eval(get(hc_delta_s,''String'')),delta_s = f_clip(delta_s,0,1);'...
' A_s = -20*log10(delta_s);'...
'else, '...
' eval(get(hc_delta_s,''String'')),A_s = f_clip(A_s,0,A_s);'...
' delta_s = 10^(-A_s/20);'...
'end; '];
hc_delta_s = f_editbox (delta_s,0,1,pos(2,:),3,3,2,colors(2,:),...
white,[cback6b inputstr plotstr],'Stopband attenuation',fsize);
% Filter order slider
dv = 0;
step1a = 1 /(n_max - n_min);
step1b = 2 /(n_max - n_min);
step2 = 0.1*n_max/(n_max-n_min);
oddstr = 'set(hc_n,''SliderStep'',[step1a,step2]), ';
evenstr = 'set(hc_n,''SliderStep'',[step1b,step2]), ';
tipstr = 'Adjust IIR filter order n';
cback = [inputstr barstr plotstr];
hc_n = f_slider (n,n_min,n_max,pos(5,:),colors(2,:),'y',cback,tipstr,dv,'',fsize);
% Select filter type
nt = 7;
labels = {'Resonator','Notch','Lowpass','Highpass','Bandpass','Bandstop','User-defined'};
estr = 'f_showslider (hc_n,han,n,'''',0); ';
fstr = ['if (xm <= 2), '...
[estr oddstr] ...
'elseif (xm >= 3) & (xm <= 4), ' ...
[barstr oddstr] ...
'elseif (xm == 7), '...
[estr oddstr] ...
'str_1 = [''fs = '' mat2str(fs) '';''];'...
'set(hc_fs,''String'',str_1);'...
'else, '...
'n = 2*floor(n/2); ' ...
[barstr evenstr] ...
'end; '];
tipstrs = {'Resonator filter','Notch filter','Lowpass filter','Highpass filter',...
'Bandpass filter','Bandstop filter','Load a,b,fs'};
cback = {[inputstr fstr plotstr],...
[inputstr fstr plotstr],...
[inputstr fstr plotstr],...
[inputstr fstr plotstr],...
[inputstr fstr plotstr],...
[inputstr fstr plotstr],...
[inputstr fstr plotstr]};
[hc_type,userinput] = f_typebuttons (pos(3,:),nt,xm,labels,colors(1,:),white,cback,userinput,tipstrs,nt,fsize);
% Select view
nv = 4;
labels = {'Magnitude response','Phase response','Pole-zero plot','Impulse response'};
cback = {plotstr,plotstr,plotstr,plotstr};
fcolors = {colors(2,:),colors(2,:),colors(2,:),colors(2,:)};
tipstrs = {'Plot A(f)','Plot phi(f)','Sketch poles and zeros','Plot h(k)'};
hc_view = f_viewbuttons (pos(4,:),nv,pv,labels,fcolors,white,cback,tipstrs,nv+1,fsize);
% Check boxes
cbackdB = ['dB = get (hc_dB,''Value''); '...
'if dB,'...
' set(hc_dB,''Value'',1),'...
' eval(get(hc_delta_p,''String'')),'...
' eval(get(hc_delta_s,''String'')),'...
' A_p = -20*log10(1 - delta_p);'...
' A_s = -20*log10(delta_s);'...
' set(hc_delta_p,''String'',[''A_p = '',mat2str(A_p,3),'';'']),'...
' set(hc_delta_s,''String'',[''A_s = '',mat2str(A_s,3),'';'']),'...
'else,'...
' set(hc_dB,''Value'',0),'...
' eval(get(hc_delta_p,''String'')),'...
' eval(get(hc_delta_s,''String'')),'...
' set(hc_dB,''Value'',0),'...
' delta_p = 1 - 10^(-A_p/20);'...
' delta_s = 10^(-A_s/20);'...
' set(hc_delta_p,''String'',[''delta_p = '',mat2str(delta_p,3),'';'']),'...
' set(hc_delta_s,''String'',[''delta_s = '',mat2str(delta_s,3),'';'']),'...
'end; '];
hc_dB = f_checkbox (dB,pos(4,:),nv+1,1,nv+1,1,'dB display',colors(3,:),...
white,[cbackdB inputstr plotstr],'Toggle dB display',fsize);
% Compute initial filter
eval (inputstr);
% Create plot
eval (plotstr)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -