⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pb_exptmod.c

📁 多项式算法库,实现多项式算法,可以支持任意长度的多项式,主要用在密码学中,验证过,十分好用
💻 C
字号:
/* LibTomPoly, Polynomial Basis Math -- Tom St Denis  *  * LibTomPoly is a public domain library that provides * polynomial basis arithmetic support.  It relies on * LibTomMath for large integer support. * * This library is free for all purposes without any * express guarantee that it works. * * Tom St Denis, tomstdenis@iahu.ca, http://poly.libtomcrypt.org */#include <tompoly.h>#ifdef MP_LOW_MEM   #define TAB_SIZE 32#else   #define TAB_SIZE 256#endifint pb_exptmod (pb_poly * G, mp_int * X, pb_poly * P, pb_poly * Y){  pb_poly  M[TAB_SIZE], res;  mp_digit buf;  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;  /* find window size */  x = mp_count_bits (X);  if (x <= 7) {    winsize = 2;  } else if (x <= 36) {    winsize = 3;  } else if (x <= 140) {    winsize = 4;  } else if (x <= 450) {    winsize = 5;  } else if (x <= 1303) {    winsize = 6;  } else if (x <= 3529) {    winsize = 7;  } else {    winsize = 8;  }#ifdef MP_LOW_MEM    if (winsize > 5) {       winsize = 5;    }#endif  /* init M array */  /* init first cell */  if ((err = pb_init(&M[1], &(Y->characteristic))) != MP_OKAY) {     return err;   }  /* now init the second half of the array */  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {    if ((err = pb_init(&M[x], &(Y->characteristic))) != MP_OKAY) {      for (y = 1<<(winsize-1); y < x; y++) {        pb_clear (&M[y]);      }      pb_clear(&M[1]);      return err;    }  }  /* create M table   *   * The M table contains powers of the base,    * e.g. M[x] = G**x mod P   *   * The first half of the table is not    * computed though accept for M[0] and M[1]   */  if (X->sign == MP_ZPOS) {     if ((err = pb_mod (G, P, &M[1])) != MP_OKAY)                             { goto __M; }  } else {     if ((err = pb_invmod(G, P, &M[1])) != MP_OKAY)                           { goto __M; }  }  /* compute the value at M[1<<(winsize-1)] by squaring    * M[1] (winsize-1) times    */  if ((err = pb_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY)             { goto __M; }  for (x = 0; x < (winsize - 1); x++) {    if ((err = pb_mulmod (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)],                          P, &M[1 << (winsize - 1)])) != MP_OKAY)             { goto __M; }  }  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)   */  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {    if ((err = pb_mulmod (&M[x - 1], &M[1], P, &M[x])) != MP_OKAY)            { goto __M; }  }  /* setup result */  if ((err = pb_init (&res, &(Y->characteristic))) != MP_OKAY)                { goto __M; }  mp_set (&(res.terms[0]), 1); res.used = 1;  /* set initial mode and bit cnt */  mode   = 0;  bitcnt = 1;  buf    = 0;  digidx = X->used - 1;  bitcpy = 0;  bitbuf = 0;  for (;;) {    /* grab next digit as required */    if (--bitcnt == 0) {      /* if digidx == -1 we are out of digits */      if (digidx == -1) {        break;      }      /* read next digit and reset the bitcnt */      buf    = X->dp[digidx--];      bitcnt = (int) DIGIT_BIT;    }    /* grab the next msb from the exponent */    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;    buf <<= (mp_digit)1;    /* if the bit is zero and mode == 0 then we ignore it     * These represent the leading zero bits before the first 1 bit     * in the exponent.  Technically this opt is not required but it     * does lower the # of trivial squaring/reductions used     */    if (mode == 0 && y == 0) {      continue;    }    /* if the bit is zero and mode == 1 then we square */    if (mode == 1 && y == 0) {      if ((err = pb_mulmod (&res, &res, P, &res)) != MP_OKAY)                 { goto __RES; }      continue;    }    /* else we add it to the window */    bitbuf |= (y << (winsize - ++bitcpy));    mode    = 2;    if (bitcpy == winsize) {      /* ok window is filled so square as required and multiply  */      /* square first */      for (x = 0; x < winsize; x++) {        if ((err = pb_mulmod (&res, &res, P, &res)) != MP_OKAY)               { goto __RES; }      }      /* then multiply */      if ((err = pb_mulmod (&res, &M[bitbuf], P, &res)) != MP_OKAY)           { goto __RES; }      /* empty window and reset */      bitcpy = 0;      bitbuf = 0;      mode   = 1;    }  }  /* if bits remain then square/multiply */  if (mode == 2 && bitcpy > 0) {    /* square then multiply if the bit is set */    for (x = 0; x < bitcpy; x++) {      if ((err = pb_mulmod (&res, &res, P, &res)) != MP_OKAY)                 { goto __RES; }      bitbuf <<= 1;      if ((bitbuf & (1 << winsize)) != 0) {        /* then multiply */        if ((err = pb_mulmod (&res, &M[1], P, &res)) != MP_OKAY)              { goto __RES; }      }    }  }  pb_exch (&res, Y);  err = MP_OKAY;__RES:pb_clear (&res);__M:  pb_clear(&M[1]);  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {    pb_clear (&M[x]);  }  return err;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -