📄 spi_bitbang.c
字号:
1 /*
2 * spi_bitbang.c - polling/bitbanging SPI master controller driver utilities
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/spinlock.h>
22 #include <linux/workqueue.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi_bitbang.h>
30
31
32 /*----------------------------------------------------------------------*/
33
34 /*
35 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
36 * Use this for GPIO or shift-register level hardware APIs.
37 *
38 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
39 * to glue code. These bitbang setup() and cleanup() routines are always
40 * used, though maybe they're called from controller-aware code.
41 *
42 * chipselect() and friends may use use spi_device->controller_data and
43 * controller registers as appropriate.
44 *
45 *
46 * NOTE: SPI controller pins can often be used as GPIO pins instead,
47 * which means you could use a bitbang driver either to get hardware
48 * working quickly, or testing for differences that aren't speed related.
49 */
50
51 struct spi_bitbang_cs {
52 unsigned nsecs; /* (clock cycle time)/2 */
53 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
54 u32 word, u8 bits);
55 unsigned (*txrx_bufs)(struct spi_device *,
56 u32 (*txrx_word)(
57 struct spi_device *spi,
58 unsigned nsecs,
59 u32 word, u8 bits),
60 unsigned, struct spi_transfer *);
61 };
62
63 static unsigned bitbang_txrx_8(
64 struct spi_device *spi,
65 u32 (*txrx_word)(struct spi_device *spi,
66 unsigned nsecs,
67 u32 word, u8 bits),
68 unsigned ns,
69 struct spi_transfer *t
70 ) {
71 unsigned bits = spi->bits_per_word;
72 unsigned count = t->len;
73 const u8 *tx = t->tx_buf;
74 u8 *rx = t->rx_buf;
75
76 while (likely(count > 0)) {
77 u8 word = 0;
78
79 if (tx)
80 word = *tx++;
81 word = txrx_word(spi, ns, word, bits);
82 if (rx)
83 *rx++ = word;
84 count -= 1;
85 }
86 return t->len - count;
87 }
88
89 static unsigned bitbang_txrx_16(
90 struct spi_device *spi,
91 u32 (*txrx_word)(struct spi_device *spi,
92 unsigned nsecs,
93 u32 word, u8 bits),
94 unsigned ns,
95 struct spi_transfer *t
96 ) {
97 unsigned bits = spi->bits_per_word;
98 unsigned count = t->len;
99 const u16 *tx = t->tx_buf;
100 u16 *rx = t->rx_buf;
101
102 while (likely(count > 1)) {
103 u16 word = 0;
104
105 if (tx)
106 word = *tx++;
107 word = txrx_word(spi, ns, word, bits);
108 if (rx)
109 *rx++ = word;
110 count -= 2;
111 }
112 return t->len - count;
113 }
114
115 static unsigned bitbang_txrx_32(
116 struct spi_device *spi,
117 u32 (*txrx_word)(struct spi_device *spi,
118 unsigned nsecs,
119 u32 word, u8 bits),
120 unsigned ns,
121 struct spi_transfer *t
122 ) {
123 unsigned bits = spi->bits_per_word;
124 unsigned count = t->len;
125 const u32 *tx = t->tx_buf;
126 u32 *rx = t->rx_buf;
127
128 while (likely(count > 3)) {
129 u32 word = 0;
130
131 if (tx)
132 word = *tx++;
133 word = txrx_word(spi, ns, word, bits);
134 if (rx)
135 *rx++ = word;
136 count -= 4;
137 }
138 return t->len - count;
139 }
140
141 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142 {
143 struct spi_bitbang_cs *cs = spi->controller_state;
144 u8 bits_per_word;
145 u32 hz;
146
147 if (t) {
148 bits_per_word = t->bits_per_word;
149 hz = t->speed_hz;
150 } else {
151 bits_per_word = 0;
152 hz = 0;
153 }
154
155 /* spi_transfer level calls that work per-word */
156 if (!bits_per_word)
157 bits_per_word = spi->bits_per_word;
158 if (bits_per_word <= 8)
159 cs->txrx_bufs = bitbang_txrx_8;
160 else if (bits_per_word <= 16)
161 cs->txrx_bufs = bitbang_txrx_16;
162 else if (bits_per_word <= 32)
163 cs->txrx_bufs = bitbang_txrx_32;
164 else
165 return -EINVAL;
166
167 /* nsecs = (clock period)/2 */
168 if (!hz)
169 hz = spi->max_speed_hz;
170 if (hz) {
171 cs->nsecs = (1000000000/2) / hz;
172 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173 return -EINVAL;
174 }
175
176 return 0;
177 }
178 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179
180 /**
181 * spi_bitbang_setup - default setup for per-word I/O loops
182 */
183 int spi_bitbang_setup(struct spi_device *spi)
184 {
185 struct spi_bitbang_cs *cs = spi->controller_state;
186 struct spi_bitbang *bitbang;
187 int retval;
188
189 bitbang = spi_master_get_devdata(spi->master);
190
191 /* REVISIT: some systems will want to support devices using lsb-first
192 * bit encodings on the wire. In pure software that would be trivial,
193 * just bitbang_txrx_le_cphaX() routines shifting the other way, and
194 * some hardware controllers also have this support.
195 */
196 if ((spi->mode & SPI_LSB_FIRST) != 0)
197 return -EINVAL;
198
199 if (!cs) {
200 cs = kzalloc(sizeof *cs, SLAB_KERNEL);
201 if (!cs)
202 return -ENOMEM;
203 spi->controller_state = cs;
204 }
205
206 if (!spi->bits_per_word)
207 spi->bits_per_word = 8;
208
209 /* per-word shift register access, in hardware or bitbanging */
210 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
211 if (!cs->txrx_word)
212 return -EINVAL;
213
214 retval = spi_bitbang_setup_transfer(spi, NULL);
215 if (retval < 0)
216 return retval;
217
218 dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec/bit\n",
219 __FUNCTION__, spi->mode & (SPI_CPOL | SPI_CPHA),
220 spi->bits_per_word, 2 * cs->nsecs);
221
222 /* NOTE we _need_ to call chipselect() early, ideally with adapter
223 * setup, unless the hardware defaults cooperate to avoid confusion
224 * between normal (active low) and inverted chipselects.
225 */
226
227 /* deselect chip (low or high) */
228 spin_lock(&bitbang->lock);
229 if (!bitbang->busy) {
230 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
231 ndelay(cs->nsecs);
232 }
233 spin_unlock(&bitbang->lock);
234
235 return 0;
236 }
237 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
238
239 /**
240 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
241 */
242 void spi_bitbang_cleanup(const struct spi_device *spi)
243 {
244 kfree(spi->controller_state);
245 }
246 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
247
248 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
249 {
250 struct spi_bitbang_cs *cs = spi->controller_state;
251 unsigned nsecs = cs->nsecs;
252
253 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
254 }
255
256 /*----------------------------------------------------------------------*/
257
258 /*
259 * SECOND PART ... simple transfer queue runner.
260 *
261 * This costs a task context per controller, running the queue by
262 * performing each transfer in sequence. Smarter hardware can queue
263 * several DMA transfers at once, and process several controller queues
264 * in parallel; this driver doesn't match such hardware very well.
265 *
266 * Drivers can provide word-at-a-time i/o primitives, or provide
267 * transfer-at-a-time ones to leverage dma or fifo hardware.
268 */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -