📄 pci_wbw_fifo_control(1).v
字号:
// write address changes on rising edge of wclock_in when writes are allowedinput renable_in, wenable_in ;// reset inputinput reset_in;// flush input// input flush_in ; // not used// almost full and empy status outputsoutput almost_full_out ;// full and empty status outputsoutput full_out, empty_out;// read and write addresses outputsoutput [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;// read and write allow outputsoutput rallow_out, wallow_out ;output half_full_out;// read address registerreg [(ADDR_LENGTH - 1):0] raddr ;// write address registerreg [(ADDR_LENGTH - 1):0] waddr;assign waddr_out = waddr ;// grey code registersreg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current// grey code register for next write addressreg [(ADDR_LENGTH - 1):0] wgrey_next ; // next// next write gray address calculation - bitwise xor between address and shifted addresswire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;// grey code pipeline for read addressreg [(ADDR_LENGTH - 1):0] rgrey_minus1 ; // one before currentreg [(ADDR_LENGTH - 1):0] rgrey_addr ; // currentreg [(ADDR_LENGTH - 1):0] rgrey_next ; // next// next read gray address calculation - bitwise xor between address and shifted addresswire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;// write allow wire - writes are allowed when fifo is not fullassign wallow_out = wenable_in & ~full_out ;// clear generation for FFs and registerswire clear = reset_in ;//rallow generationassign rallow_out = renable_in & ~empty_out ; // reads allowed if read enable is high and FIFO is not empty// at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary// when FIFO is empty, this register provides actual read address, so first location can be readreg [(ADDR_LENGTH - 1):0] raddr_plus_one ;wire [ADDR_LENGTH :0] fifo_fullness; //Robert, burst issue//Robert, burst issueassign fifo_fullness = (waddr > raddr) ? ({1'b0, waddr} - {1'b0, raddr}) : ({1'b1, waddr} - {1'b0, raddr});assign half_full_out = fifo_fullness[(ADDR_LENGTH - 1)] ;//Robert, burst issue// address output mux - when FIFO is empty, current actual address is driven out, when it is non - empty next address is driven out// done for zero wait state burstassign raddr_out = rallow_out ? raddr_plus_one : raddr ;always@(posedge rclock_in or posedge clear)begin if (clear) begin raddr_plus_one <= #`FF_DELAY 4 ; raddr <= #`FF_DELAY 3 ; end else if (rallow_out) begin raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ; raddr <= #`FF_DELAY raddr_plus_one ; endend/*-----------------------------------------------------------------------------------------------Read address control consists of Read address counter and Grey Address pipelineThere are 3 Grey addresses: - rgrey_minus1 is Grey Code of address one before current address - rgrey_addr is Grey Code of current read address - rgrey_next is Grey Code of next read address--------------------------------------------------------------------------------------------------*/// grey coded address pipeline for status generation in read clock domainalways@(posedge rclock_in or posedge clear)begin if (clear) begin // initial value is 0 rgrey_minus1 <= #1 0 ; rgrey_addr <= #1 1 ; rgrey_next <= #`FF_DELAY 3 ; end else if (rallow_out) begin rgrey_minus1 <= #1 rgrey_addr ; rgrey_addr <= #1 rgrey_next ; rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ; endend/*--------------------------------------------------------------------------------------------Write address control consists of write address counter and Grey Code Register----------------------------------------------------------------------------------------------*/// grey coded address pipeline for status generation in write clock domainalways@(posedge wclock_in or posedge clear)begin if (clear) begin wgrey_addr <= #`FF_DELAY 1 ; wgrey_next <= #1 3 ; end else if (wallow_out) begin wgrey_addr <= #`FF_DELAY wgrey_next ; wgrey_next <= #1 {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ; endend// write address counter - nothing special - initial value is important thoughalways@(posedge wclock_in or posedge clear)begin if (clear) // initial value 4 waddr <= #`FF_DELAY 3 ; else if (wallow_out) waddr <= #`FF_DELAY waddr + 1'b1 ;end/*------------------------------------------------------------------------------------------------------------------------------Gray coded address of read address decremented by 1 is synchronized to write clock domain and compared to:- Gray coded write address. If they are equal, fifo is full.- Gray coded next write address. If they are equal, fifo is almost full.--------------------------------------------------------------------------------------------------------------------------------*/wire [(ADDR_LENGTH - 1):0] wclk_sync_rgrey_minus1 ;reg [(ADDR_LENGTH - 1):0] wclk_rgrey_minus1 ;pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_rgrey_minus1( .data_in (rgrey_minus1), .clk_out (wclock_in), .sync_data_out (wclk_sync_rgrey_minus1), .async_reset (clear)) ;always@(posedge wclock_in or posedge clear)begin if (clear) begin wclk_rgrey_minus1 <= #`FF_DELAY 0 ; end else begin wclk_rgrey_minus1 <= #`FF_DELAY wclk_sync_rgrey_minus1 ; endendassign full_out = (wgrey_addr == wclk_rgrey_minus1) ;assign almost_full_out = (wgrey_next == wclk_rgrey_minus1) ;/*------------------------------------------------------------------------------------------------------------------------------Empty control:Gray coded address of next write address is synchronized to read clock domain and compared to Gray coded next read address.If they are equal, fifo is empty.--------------------------------------------------------------------------------------------------------------------------------*/wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_next ;reg [(ADDR_LENGTH - 1):0] rclk_wgrey_next ;pci_synchronizer_flop #(ADDR_LENGTH, 3) i_synchronizer_reg_wgrey_next( .data_in (wgrey_next), .clk_out (rclock_in), .sync_data_out (rclk_sync_wgrey_next), .async_reset (clear)) ;always@(posedge rclock_in or posedge clear)begin if (clear) rclk_wgrey_next <= #`FF_DELAY 3 ; else rclk_wgrey_next <= #`FF_DELAY rclk_sync_wgrey_next ;endassign empty_out = (rgrey_next == rclk_wgrey_next) ;endmodule</pre><hr /><address><span style="font-size: smaller">FreeBSD-CVSweb <<a href="mailto:freebsd-cvsweb@FreeBSD.org">freebsd-cvsweb@FreeBSD.org</a>></span></address></body></html><!-- pf_body_end --></td><td><img width=15 src="/images/dotty.gif"></td></tr></table><xcenter><p><table width=100% cellpadding=0 cellspacing=0 border=0> <tr><td align=right valign=bottom><a title='Top' href='#top'><img border=0 alt='Top' src='/images/hr_up.gif'></a></td></tr> <tr><td background='/images/hpd.gif'><img height=1 border=0 src='/images/dotty.gif'></td></tr><tr><td height=4><img height=4 src='/images/dotty.gif'></td></tr></table> <br><!--<table border=0 cellpadding=0 cellspacing=1 bgcolor=#ffffff><tr><td><table cellpadding=0 cellspacing=0 border=0 bgcolor=#ffffff><tr><td>//--><script type="text/javascript"><!--google_ad_client = "pub-9285819221080148";google_alternate_color = "FFFFFF";google_ad_width = 728;google_ad_height = 90;google_ad_format = "728x90_as";google_ad_type = "text_image";google_ad_channel ="3034172958";google_color_border = "ffffff";google_color_bg = "ffffff";google_color_link = "444488";google_color_url = "b00000";google_color_text = "666666";//--></script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"></script><!--</td></tr></table></td></tr></table>//--></center><img border=0 src="/images/dotty.gif" height=1 width=400><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30><img border=0 src="/images/dotty.gif" height=1 width=30></td></tr></table> </td></tr><tr bgcolor=#000000><td><img height=1 src="/images/dotty.gif"></td></tr></table><table background="/images/topbg.gif" width=100% cellpadding=0 cellspacing=0 border=0 bgcolor=#aaddff><tr><td align=right>Copyright (c) 1999-2007 OPENCORES.ORG. All rights reserved. </td></tr><tr><td> </td></tr></table></td><td width=1 bgcolor=#000000><img width=1 src="/images/dotty.gif"></td><td width=1 bgcolor=#f0f0c8><img width=1 src="/images/dotty.gif"></td></tr></table></center><!-- pf_footer_start --> </body></html><!-- pf_footer_end -->
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -