📄 mergesort.htm
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<link rel="stylesheet" href="css/stdlayout.css" type="text/css">
<link rel="stylesheet" href="css/print.css" type="text/css">
<meta content="text/html; charset=gb2312" http-equiv="content-type">
<title>合并排序法</title>
</head>
<body>
<h3><a href="http://caterpillar.onlyfun.net/GossipCN/index.html">From
Gossip@caterpillar</a></h3>
<h1><a href="AlgorithmGossip.htm">Algorithm Gossip: 合并排序法</a></h1>
<h2>说明</h2>
之前所介绍的排序法都是在同一个阵列中的排序,考虑今日有两笔或两笔以上的资料,它可能是不同阵列中的资料,或是不同档案中的资料,如何为它们进行排序?<br>
<h2>解法</h2>
可以使用合并排序法,合并排序法基本是将两笔已排序的资料合并并进行排序,如果所读入的资料尚未排序,可以先利用其它的排序方式来处理这两笔资料,然后再将排序好的这两笔资料合并。<br>
<br>
有人问道,如果两笔资料本身就无排序顺序,何不将所有的资料读入,再一次进行排序?排序的精神是尽量利用资料已排序的部份,来加快排序的效率,小笔资料的
排序较为快速,如果小笔资料排序完成之后,再合并处理时,因为两笔资料都有排序了,所有在合并排序时会比单纯读入所有的资料再一次排序来的有效率。<br>
<br>
那么可不可以直接使用合并排序法本身来处理整个排序的动作?而不动用到其它的排序方式?答案是肯定的,只要将所有的数字不断的分为两个等分,直到最后剩一个数字为止,然后再反过来不断的合并,就如下图所示: <br>
<div style="text-align: center;"><img style="width: 331px; height: 181px;" alt="合并排序" title="合并排序" src="images/mergeSort-1.jpg"></div>
<br>
<br>
不过基本上分割又会花去额外的时间,不如使用其它较好的排序法来排序小笔资料,再使用合并排序来的有效率。<br>
<br>
下面这个程式范例,我们使用快速排序法来处理小笔资料排序,然后再使用合并排序法处理合并的动作。 <br>
<br>
<h2> 实作</h2>
<ul>
<li> C
</li>
</ul>
<pre>#include <stdio.h> <br>#include <stdlib.h> <br>#include <time.h> <br>#define MAX1 10 <br>#define MAX2 10 <br>#define SWAP(x,y) {int t; t = x; x = y; y = t;} <br><br>int partition(int[], int, int); <br>void quicksort(int[], int, int); <br>void mergesort(int[], int, int[], int, int[]); <br><br>int main(void) { <br> int number1[MAX1] = {0}; <br> int number2[MAX1] = {0}; <br> int number3[MAX1+MAX2] = {0}; <br> int i, num; <br><br> srand(time(NULL)); <br><br> printf("排序前:"); <br> printf("\nnumber1[]:"); <br> for(i = 0; i < MAX1; i++) { <br> number1[i] = rand() % 100; <br> printf("%d ", number1[i]); <br> } <br><br> printf("\nnumber2[]:"); <br> for(i = 0; i < MAX2; i++) { <br> number2[i] = rand() % 100; <br> printf("%d ", number2[i]); <br> } <br><br> // 先排序两笔资料 <br> quicksort(number1, 0, MAX1-1); <br> quicksort(number2, 0, MAX2-1); <br><br> printf("\n排序后:"); <br> printf("\nnumber1[]:"); <br> for(i = 0; i < MAX1; i++) <br> printf("%d ", number1[i]); <br> printf("\nnumber2[]:"); <br> for(i = 0; i < MAX2; i++) <br> printf("%d ", number2[i]); <br><br> // 合并排序 <br> mergesort(number1, MAX1, number2, MAX2, number3); <br><br> printf("\n合并后:"); <br> for(i = 0; i < MAX1+MAX2; i++) <br> printf("%d ", number3[i]); <br> <br> printf("\n"); <br><br> return 0; <br>} <br><br>int partition(int number[], int left, int right) { <br> int i, j, s; <br><br> s = number[right]; <br> i = left - 1; <br><br> for(j = left; j < right; j++) { <br> if(number[j] <= s) { <br> i++; <br> SWAP(number[i], number[j]); <br> } <br> } <br><br> SWAP(number[i+1], number[right]); <br> return i+1; <br>} <br><br>void quicksort(int number[], int left, int right) { <br> int q; <br><br> if(left < right) { <br> q = partition(number, left, right); <br> quicksort(number, left, q-1); <br> quicksort(number, q+1, right); <br> } <br>} <br><br>void mergesort(int number1[], int M, int number2[], <br> int N, int number3[]) { <br> int i = 0, j = 0, k = 0; <br><br> while(i < M && j < N) { <br> if(number1[i] <= number2[j]) <br> number3[k++] = number1[i++]; <br> else <br> number3[k++] = number2[j++]; <br> } <br><br> while(i < M) <br> number3[k++] = number1[i++]; <br> while(j < N) <br> number3[k++] = number2[j++]; <br>} <br></pre>
<br>
<ul>
<li> Java
</li>
</ul>
<pre>public class MergeSort {<br> public static int[] sort(int[] number1, <br> int[] number2) {<br> int[] number3 = <br> new int[number1.length + number2.length];<br> <br> int i = 0, j = 0, k = 0; <br><br> while(i < number1.length && j < number2.length) { <br> if(number1[i] <= number2[j]) <br> number3[k++] = number1[i++]; <br> else <br> number3[k++] = number2[j++]; <br> } <br><br> while(i < number1.length) <br> number3[k++] = number1[i++]; <br> while(j < number2.length) <br> number3[k++] = number2[j++];<br> <br> return number3;<br> }<br>}</pre>
<br>
<br>
</body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -