📄 infixpostfix.htm
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<link rel="stylesheet" href="css/stdlayout.css" type="text/css">
<link rel="stylesheet" href="css/print.css" type="text/css">
<meta content="text/html; charset=gb2312" http-equiv="content-type">
<title>中序式转后序式(前序式)</title>
</head>
<body>
<h3><a href="http://caterpillar.onlyfun.net/GossipCN/index.html">From
Gossip@caterpillar</a></h3>
<h1><a href="AlgorithmGossip.htm">Algorithm Gossip: 中序式转后序式(前序式)</a></h1>
<h2>说明</h2>
平常所使用的运算式,主要是将运算元放在运算子的两旁,例如a+b/d这样的式子,这称之为中序(Infix)表示式,对于人类来说,这样的式子很容易理
解,但由于电脑执行指令时是有顺序的,遇到中序表示式时,无法直接进行运算,而必须进一步判断运算的先后顺序,所以必须将中序表示式转换为另一种表示方
法。<br>
<br>
可以将中序表示式转换为后序(Postfix)表示式,后序表示式又称之为逆向波兰表示式(Reverse polish notation),它是由波兰的数学家卢卡谢维奇提出,例如(a+b)*(c+d)这个式子,表示为后序表示式时是ab+cd+*。<br>
<h2>解法</h2>
用手算的方式来计算后序式相当的简单,将运算子两旁的运算元依先后顺序全括号起来,然后将所有的右括号取代为左边最接近的运算子(从最内层括号开始),最后去掉所有的左括号就可以完成后序表示式,例如:<br>
<div style="margin-left: 40px;"><span style="font-weight: bold; font-family: Courier New,Courier,monospace;">a+b*d+c/d => ((a+(b*d))+(c/d)) -> bd*+cd/+</span><br>
</div>
<br>
如果要用程式来进行中序转后序,则必须使用堆叠,演算法很简单,直接叙述的话就是使用回圈,取出中序式的字元,遇运算元直接输出,堆叠运算子与左括号, ISP>ICP的话直接输出堆叠中的运算子,遇右括号输出堆叠中的运算子至左括号。 <br>
<br>
<h2> 演算法</h2>
以下是虚拟码的运算法,\0表示中序式读取完毕: <br>
<pre>Procedure Postfix(infix) [<br> Loop [<br> op = infix(i) <br> case [<br> :x = '\0': <br> while (stack not empty) <br> // output all elements in stack <br> end <br> return <br> :x = '(': <br> // put it into stack <br> :x is operator: <br> while (priority(stack[top]) >= <br> priority(op)) [<br> // out a element from stack <br> ]<br> // save op into stack <br> :x = ')': <br> while ( stack(top) != '(' ) [<br> // out a element from stack <br> ]<br> top = top - 1 // not out '( <br> :else: <br> // output current op <br> ]<br> i++; <br> ]<br>] <br></pre>
<br>
例如(a+b)*(c+d)这个式子,依演算法的输出过程如下:
<table border="1" width="50%">
<tbody>
<tr>
<td align="left" valign="top"><small>OP </small></td>
<td align="left" valign="top"><small>STACK </small></td>
<td align="left" valign="top"><small>OUTPUT </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>( </small></td>
<td align="left" valign="top"><small>( </small></td>
<td align="left" valign="top"><small>- </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>a </small></td>
<td align="left" valign="top"><small>( </small></td>
<td align="left" valign="top"><small>a </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>+ </small></td>
<td align="left" valign="top"><small>(+ </small></td>
<td align="left" valign="top"><small>a </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>b </small></td>
<td align="left" valign="top"><small>(+ </small></td>
<td align="left" valign="top"><small>ab </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>) </small></td>
<td align="left" valign="top"><small>- </small></td>
<td align="left" valign="top"><small>ab+ </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>* </small></td>
<td align="left" valign="top"><small>* </small></td>
<td align="left" valign="top"><small>ab+ </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>( </small></td>
<td align="left" valign="top"><small>*( </small></td>
<td align="left" valign="top"><small>ab+ </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>c </small></td>
<td align="left" valign="top"><small>*( </small></td>
<td align="left" valign="top"><small>ab+c </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>+ </small></td>
<td align="left" valign="top"><small>*(+ </small></td>
<td align="left" valign="top"><small>ab+c </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>d </small></td>
<td align="left" valign="top"><small>*(+ </small></td>
<td align="left" valign="top"><small>ab+cd </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>) </small></td>
<td align="left" valign="top"><small>* </small></td>
<td align="left" valign="top"><small>ab+cd+ </small></td>
</tr>
<tr>
<td align="left" valign="top"><small>- </small></td>
<td align="left" valign="top"><small>- </small></td>
<td align="left" valign="top"><small>ab+cd+* </small></td>
</tr>
</tbody>
</table>
<br>
如果要将中序式转为前序式,则在读取中序式时是由后往前读取,而左右括号的处理方式相反,其余不变,但输出之前必须先置入堆叠,待转换完成后再将堆叠中的
值由上往下读出,如此就是前序表示式。 <br>
<h2> 实作</h2>
<ul>
<li> C
</li>
</ul>
<pre>#include <stdio.h> <br>#include <stdlib.h> <br><br>int postfix(char*); // 中序转后序 <br>int priority(char); // 决定运算子优先顺序 <br><br>int main(void) { <br> char input[80]; <br><br> printf("输入中序运算式:"); <br> scanf("%s", input); <br> postfix(input); <br><br> return 0; <br>} <br><br>int postfix(char* infix) { <br> int i = 0, top = 0; <br> char stack[80] = {'\0'}; <br> char op; <br><br> while(1) { <br> op = infix[i]; <br><br> switch(op) { <br> case '\0': <br> while(top > 0) { <br> printf("%c", stack[top]); <br> top--; <br> } <br> printf("\n"); <br> return 0; <br> // 运算子堆叠 <br> case '(': <br> if(top < (sizeof(stack) / sizeof(char))) { <br> top++; <br> stack[top] = op; <br> } <br> break; <br> case '+': case '-': case '*': case '/': <br> while(priority(stack[top]) >= priority(op)) { <br> printf("%c", stack[top]); <br> top--; <br> } <br> // 存入堆叠 <br> if(top < (sizeof(stack) / sizeof(char))) { <br> top++; <br> stack[top] = op; <br> } <br> break; <br> // 遇 ) 输出至 ( <br> case ')': <br> while(stack[top] != '(') { <br> printf("%c", stack[top]); <br> top--; <br> } <br> top--; // 不输出( <br> break; <br> // 运算元直接输出 <br> default: <br> printf("%c", op); <br> break; <br> } <br> i++; <br> } <br>} <br><br>int priority(char op) { <br> int p; <br><br> switch(op) { <br> case '+': case '-': <br> p = 1; <br> break; <br> case '*': case '/': <br> p = 2; <br> break; <br> default: <br> p = 0; <br> break; <br> } <br><br> return p; <br>} <br></pre>
<br>
<ul>
<li> Java
</li>
</ul>
<pre>public class InFix {<br> private static int priority(char op) { <br> switch(op) { <br> case '+': case '-': <br> return 1; <br> case '*': case '/': <br> return 2;<br> default: <br> return 0;<br> } <br> }<br> <br> public static char[] toPosfix(char[] infix) {<br> char[] stack = new char[infix.length]; <br> char[] postfix = new char[infix.length];<br> char op; <br><br> StringBuffer buffer = new StringBuffer();<br><br> int top = 0;<br> for(int i = 0; i < infix.length; i++) { <br> op = infix[i]; <br> switch(op) { <br> // 运算子堆叠 <br> case '(': <br> if(top < stack.length) { <br> top++; <br> stack[top] = op; <br> } <br> break; <br> case '+': case '-': case '*': case '/': <br> while(priority(stack[top]) >= <br> priority(op)) { <br> buffer.append(stack[top]);<br> top--; <br> } <br> // 存入堆叠 <br> if(top < stack.length) { <br> top++; <br> stack[top] = op; <br> } <br> break; <br> // 遇 ) 输出至 ( <br> case ')': <br> while(stack[top] != '(') { <br> buffer.append(stack[top]);<br> top--; <br> } <br> top--; // 不输出( <br> break; <br> // 运算元直接输出 <br> default: <br> buffer.append(op);<br> break; <br> } <br> } <br> <br> while(top > 0) { <br> buffer.append(stack[top]);<br> top--; <br> }<br> <br> return buffer.toString().toCharArray();<br> }<br> <br> public static char[] toPrefix(char[] infix) {<br> char[] stack = new char[infix.length];<br> char op; <br><br> StringBuffer buffer = new StringBuffer();<br> <br> int top = 0;<br> for(int i = infix.length - 1; i >= 0; i--) { <br> op = infix[i]; <br> switch(op) { <br> // 运算子堆叠 <br> case ')': <br> if(top < stack.length) { <br> top++; <br> stack[top] = op; <br> } <br> break; <br> case '+': case '-': case '*': case '/': <br> while(priority(stack[top]) >= <br> priority(op)) { <br> buffer.append(stack[top]);<br> top--; <br> } <br> // 存入堆叠 <br> if(top < stack.length) { <br> top++; <br> stack[top] = op; <br> } <br> break; <br> // 遇 ( 输出至 ) <br> case '(': <br> while(stack[top] != ')') { <br> buffer.append(stack[top]);<br> top--; <br> } <br> top--; // 不输出) <br> break; <br> // 运算元直接输出 <br> default: <br> buffer.append(op); <br> break; <br> } <br> } <br> <br> while(top > 0) { <br> buffer.append(stack[top]);<br> top--; <br> } <br> <br> return buffer.reverse().toString().toCharArray();<br> }<br> <br> public static void main(String[] args) {<br> String infix = "(a+b)*(c+d)";<br> <br> System.out.println(<br> InFix.toPosfix(infix.toCharArray()));<br> System.out.println(<br> InFix.toPrefix(infix.toCharArray()));<br> }<br>} </pre>
<br>
<br>
</body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -