📄 sigmafr.m
字号:
function varargout = sigmaFr(F, Q, w)
% [sv, w] = sigmaFr(F, Q, w)
% Singular value plot of a fractional plant. Paramter w may be a vector with the
% frequencies of the plot (in rad/s) or a cell with the limits of the
% frequency range of the plot (in rad/s). If empty a suitable range is
% provided.
% F is an lti object, and Q the commensurate order (the default value
% of which will be 1). For instance, plant 1/(1+s^.5) correponds to
% F = tf(1,[1 1]) and Q = 0.5.
% A singular value diagram is plot if there are no return values.
% Otherwise the function returns the values (absolute value)
% at frequencies w (in rad/s).
% Duarte Val閞io 2004
if nargin < 3 % no data on w was provided
temp = abs([tzero(F); pole(F)]);
if min(temp)
wmax = 10^ceil(log10(max(temp))) * 100;
wmin = 10^floor(log10(min(temp))) / 100;
else % temp is all zeros
wmax = 100;
wmin = .01;
end
w = logspace(log10(wmin), log10(wmax), 10 * ceil(log10(wmax/wmin)));
end
% there are 10 frequencies per decade
if iscell(w) % only wmax and wmin were provided
wmin = w{1};
wmax = w{2};
w = logspace(log10(wmin), log10(wmax), 10 * ceil(log10(wmax/wmin)));
end
if nargin < 2, Q = 1; end % integer plants assumed as default
singval = []; % will contain singular values
lines = size(F,1);
columns = size(F,2);
for i = 1:length(w)
tempMatrix = [];
for n = 1:lines
for k = 1:columns
leng = length(F(n,k).num{1});
tempNum = 0;
for m = 1:leng
tempNum = tempNum + F(n,k).num{1}(leng-m+1) * (j*w(i))^((m-1)*Q);
end
tempDen = 0;
for m = 1:leng
tempDen = tempDen + F(n,k).den{1}(leng-m+1) * (j*w(i))^((m-1)*Q);
end
tempMatrix(n,k) = tempNum / tempDen;
end
end
singval = [singval, svd(tempMatrix)];
end
if nargout == 0 % there are no output variables, draw a plot
semilogx(w, 20*log10(singval), 'b')
grid on
title('Singular values')
xlabel('frequency / rad s^{-1}')
ylabel('singular values / dB')
else
varargout{1} = singval;
if nargout > 1, varargout{2} = w; end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -