📄 cvsd.c
字号:
/*
* CVSD (Continuously Variable Slope Delta modulation)
* conversion routines
*
* The CVSD format is described in the MIL Std 188 113, which is
* available from http://bbs.itsi.disa.mil:5580/T3564
*
* Copyright (C) 1996
* Thomas Sailer (sailer@ife.ee.ethz.ch) (HB9JNX/AE4WA)
* Swiss Federal Institute of Technology, Electronics Lab
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Change History:
*
* June 1, 1998 - Chris Bagwell (cbagwell@sprynet.com)
* Fixed compile warnings reported by Kjetil Torgrim Homme
* <kjetilho@ifi.uio.no>
*
*
*/
/* ---------------------------------------------------------------------- */
#include "sox_i.h"
#include <math.h>
#include <string.h>
#include <time.h>
#include <stdio.h>
#include <errno.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h> /* For SEEK_* defines if not found in stdio */
#endif
#include "cvsdfilt.h"
/* ---------------------------------------------------------------------- */
/*
* private data structures
*/
struct cvsd_common_state {
unsigned overload;
float mla_int;
float mla_tc0;
float mla_tc1;
unsigned phase;
unsigned phase_inc;
float v_min, v_max;
};
struct cvsd_decode_state {
float output_filter[DEC_FILTERLEN];
};
struct cvsd_encode_state {
float recon_int;
float input_filter[ENC_FILTERLEN];
};
struct cvsdpriv {
struct cvsd_common_state com;
union {
struct cvsd_decode_state dec;
struct cvsd_encode_state enc;
} c;
struct {
unsigned char shreg;
unsigned mask;
unsigned cnt;
} bit;
unsigned bytes_written;
unsigned cvsd_rate;
};
static int debug_count = 0;
/* ---------------------------------------------------------------------- */
static float float_conv(float *fp1, float *fp2,int n)
{
float res = 0;
for(; n > 0; n--)
res += (*fp1++) * (*fp2++);
return res;
}
/* ---------------------------------------------------------------------- */
/*
* some remarks about the implementation of the CVSD decoder
* the principal integrator is integrated into the output filter
* to achieve this, the coefficients of the output filter are multiplied
* with (1/(1-1/z)) in the initialisation code.
* the output filter must have a sharp zero at f=0 (i.e. the sum of the
* filter parameters must be zero). This prevents an accumulation of
* DC voltage at the principal integration.
*/
/* ---------------------------------------------------------------------- */
static void cvsdstartcommon(ft_t ft)
{
struct cvsdpriv *p = (struct cvsdpriv *) ft->priv;
p->cvsd_rate = (ft->signal.rate <= 24000) ? 16000 : 32000;
ft->signal.rate = 8000;
ft->signal.channels = 1;
ft->signal.size = SOX_SIZE_16BIT; /* make output format default to words */
ft->signal.encoding = SOX_ENCODING_SIGN2;
/*
* initialize the decoder
*/
p->com.overload = 0x5;
p->com.mla_int = 0;
/*
* timeconst = (1/e)^(200 / SR) = exp(-200/SR)
* SR is the sampling rate
*/
p->com.mla_tc0 = exp((-200.0)/((float)(p->cvsd_rate)));
/*
* phase_inc = 32000 / SR
*/
p->com.phase_inc = 32000 / p->cvsd_rate;
/*
* initialize bit shift register
*/
p->bit.shreg = p->bit.cnt = 0;
p->bit.mask = 1;
/*
* count the bytes written
*/
p->bytes_written = 0;
p->com.v_min = 1;
p->com.v_max = -1;
sox_report("cvsd: bit rate %dbit/s, bits from %s", p->cvsd_rate,
ft->signal.reverse_bits ? "msb to lsb" : "lsb to msb");
}
/* ---------------------------------------------------------------------- */
static int sox_cvsdstartread(ft_t ft)
{
struct cvsdpriv *p = (struct cvsdpriv *) ft->priv;
float *fp1;
int i;
cvsdstartcommon(ft);
p->com.mla_tc1 = 0.1 * (1 - p->com.mla_tc0);
p->com.phase = 0;
/*
* initialize the output filter coeffs (i.e. multiply
* the coeffs with (1/(1-1/z)) to achieve integration
* this is now done in the filter parameter generation utility
*/
/*
* zero the filter
*/
for(fp1 = p->c.dec.output_filter, i = DEC_FILTERLEN; i > 0; i--)
*fp1++ = 0;
return (SOX_SUCCESS);
}
/* ---------------------------------------------------------------------- */
static int sox_cvsdstartwrite(ft_t ft)
{
struct cvsdpriv *p = (struct cvsdpriv *) ft->priv;
float *fp1;
int i;
cvsdstartcommon(ft);
p->com.mla_tc1 = 0.1 * (1 - p->com.mla_tc0);
p->com.phase = 4;
/*
* zero the filter
*/
for(fp1 = p->c.enc.input_filter, i = ENC_FILTERLEN; i > 0; i--)
*fp1++ = 0;
p->c.enc.recon_int = 0;
return(SOX_SUCCESS);
}
/* ---------------------------------------------------------------------- */
static int sox_cvsdstopwrite(ft_t ft)
{
struct cvsdpriv *p = (struct cvsdpriv *) ft->priv;
if (p->bit.cnt) {
sox_writeb(ft, p->bit.shreg);
p->bytes_written++;
}
sox_debug("cvsd: min slope %f, max slope %f",
p->com.v_min, p->com.v_max);
return (SOX_SUCCESS);
}
/* ---------------------------------------------------------------------- */
static int sox_cvsdstopread(ft_t ft)
{
struct cvsdpriv *p = (struct cvsdpriv *) ft->priv;
sox_debug("cvsd: min value %f, max value %f",
p->com.v_min, p->com.v_max);
return(SOX_SUCCESS);
}
/* ---------------------------------------------------------------------- */
static sox_size_t sox_cvsdread(ft_t ft, sox_sample_t *buf, sox_size_t nsamp)
{
struct cvsdpriv *p = (struct cvsdpriv *) ft->priv;
sox_size_t done = 0;
float oval;
while (done < nsamp) {
if (!p->bit.cnt) {
if (sox_readb(ft, &(p->bit.shreg)) == SOX_EOF)
return done;
p->bit.cnt = 8;
p->bit.mask = 1;
}
/*
* handle one bit
*/
p->bit.cnt--;
p->com.overload = ((p->com.overload << 1) |
(!!(p->bit.shreg & p->bit.mask))) & 7;
p->bit.mask <<= 1;
p->com.mla_int *= p->com.mla_tc0;
if ((p->com.overload == 0) || (p->com.overload == 7))
p->com.mla_int += p->com.mla_tc1;
memmove(p->c.dec.output_filter+1, p->c.dec.output_filter,
sizeof(p->c.dec.output_filter)-sizeof(float));
if (p->com.overload & 1)
p->c.dec.output_filter[0] = p->com.mla_int;
else
p->c.dec.output_filter[0] = -p->com.mla_int;
/*
* check if the next output is due
*/
p->com.phase += p->com.phase_inc;
if (p->com.phase >= 4) {
oval = float_conv(p->c.dec.output_filter,
(p->cvsd_rate < 24000) ?
dec_filter_16 : dec_filter_32,
DEC_FILTERLEN);
sox_debug_more("input %d %f\n", debug_count, p->com.mla_int);
sox_debug_more("recon %d %f\n", debug_count, oval);
debug_count++;
if (oval > p->com.v_max)
p->com.v_max = oval;
if (oval < p->com.v_min)
p->com.v_min = oval;
*buf++ = (oval * ((float)SOX_SAMPLE_MAX));
done++;
}
p->com.phase &= 3;
}
return done;
}
/* ---------------------------------------------------------------------- */
static sox_size_t sox_cvsdwrite(ft_t ft, const sox_sample_t *buf, sox_size_t nsamp)
{
struct cvsdpriv *p = (struct cvsdpriv *) ft->priv;
sox_size_t done = 0;
float inval;
for(;;) {
/*
* check if the next input is due
*/
if (p->com.phase >= 4) {
if (done >= nsamp)
return done;
memmove(p->c.enc.input_filter+1, p->c.enc.input_filter,
sizeof(p->c.enc.input_filter)-sizeof(float));
p->c.enc.input_filter[0] = (*buf++) /
((float)SOX_SAMPLE_MAX);
done++;
}
p->com.phase &= 3;
/* insert input filter here! */
inval = float_conv(p->c.enc.input_filter,
(p->cvsd_rate < 24000) ?
(enc_filter_16[(p->com.phase >= 2)]) :
(enc_filter_32[p->com.phase]),
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -