📄 efg1d.m
字号:
% ONE DIMENSIONAL EFG PROGRAM% SET UP NODAL COORDINATES ALONG BAR, DETERMINE NUMBER OF CELLSx = [0.0:.1:1.0];nnodes = length(x);ncells = nnodes-1;% SET PARAMETERS FOR WEIGHT FUNCTION, MATERIAL PROPERITESdmax = 2.0;E=1.0; area=1.0;% DETERMINE DMI FOR EACH NODEdm = dmax*(x(2)-x(1))*ones(1,nnodes);%SET UP GAUSS POINTS, WEIGHTS, AND JACOBIAN FOR EACH CELLgg = zeros(1,ncells);jac = (x(2)-x(1))/2;weight = 2;gg = -.05:.1:0.95; gg(1) = 0.0;% INITIALIZE MATRICESk = zeros(nnodes);f = zeros(nnodes,1);GG = zeros(nnodes,1);% LOOP OVER GAUSS POINTSfor j = 1:length(gg) xg = gg(j); % DETERMINE DISTANCE BETWEEN NODES AND GAUSS POINT dif = xg*ones(1,nnodes)-x;; % SET UP WEIGHTS W AND DW FOR EACH NODE clear w dw for i=1:nnodes drdx = sign(dif(i))/dm(i); r = abs(dif(i))/dm(i); if r<=0.5 w(i) = (2/3) - 4*r*r + 4*r^3; dw(i) = (-8*r + 12*r^2)*drdx; elseif r<=1.0 w(i) = (4/3)-4*r+4*r*r -(4/3)*r^3; dw(i) = (-4 + 8*r-4*r^2)*drdx; elseif r>1.0 w(i) = 0.0; dw(i) = 0.0; end end %SET UP SHAPE FUNCTIONS AND DERIVATIVES won = ones(1,nnodes); p = [won;x]; B = p.*[w;w]; pp = zeros(2); A = zeros(2); dA = zeros(2); for i=1:nnodes pp = p(1:2,i)*p(1:2,i)'; A = A+w(1,i)*pp; dA = dA+dw(1,i)*pp; end Ainv = inv(A); pg = [1 xg]; phi = pg*Ainv*B; db = p.*[dw;dw]; da = -Ainv*(dA*Ainv); dphi = [0 1]*Ainv*B+pg*(da*B+Ainv*db); %ASSEMBLE DISCRETE EQUATIONS if j == 1 GG(1:3,1) = -phi(1:3)'; else if j>1 k = k+(weight*E*area*jac)*(dphi'*dphi); fbody = area*xg; f = f+(weight*fbody*jac)*phi'; end endend% ENFORCE BOUNDARY CONDITIONS USING LAGRANGE MULTIPLIERSq = [0];m = [k GG;GG' zeros(1)];% SOLVE FOR NODAL PARAMETERSd = m\[f' q]';u = d(1:nnodes);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -