⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adsp-ts201_c.ldf

📁 ADI TS系列的DSP FFT源代码
💻 LDF
字号:
ARCHITECTURE(ADSP-TS201)

#ifndef __NO_STD_LIB
SEARCH_DIR( $ADI_DSP/TS/lib )
#endif


// Libsim provides fast, mostly host emulated IO only supported by
// the simulator. The libio library provides IO processing (including
// file support) mostly done by the TigerSHARC target that is supported
// by the emulator and simulator. Libio together with libsim is the
// default used, but if __USING_LIBSIM is defined only libsim will be used.
//   From the driver command line, use options,
//          "-flags-link -MD__USING_LIBSIM=1"
//   in the IDDE, add -MD__USING_LIBSIM=1 to the linker additional
//   options

// The define __WORKAROUNDS_ENABLED if set will indicate that the
// libraries built with ADSP-TS20x errata workarounds are to be
// Used for the link.

#ifndef __USING_LIBSIM
  #ifdef __WORKAROUNDS_ENABLED
    #ifdef __TS_BYTE_ADDRESS
      $IOLIB     = libio_TS201_ba_w.dlb;
      $IOLIB_MT  = libio_TS201_mt_ba_w.dlb;
    #else
      // default option, using libio and libsim
      $IOLIB     = libio_TS201_w.dlb;
      $IOLIB_MT  = libio_TS201_mt_w.dlb;
    #endif  // __TS_BYTE_ADDRESS
  #else
    #ifdef __TS_BYTE_ADDRESS
      $IOLIB     = libio_TS201_ba.dlb;
      $IOLIB_MT  = libio_TS201_mt_ba.dlb;
    #else
      // default option, using libio and libsim
      $IOLIB     = libio_TS201.dlb;
      $IOLIB_MT  = libio_TS201_mt.dlb;
    #endif  // __TS_BYTE_ADDRESS
  #endif
#else
  // using only libsim
  $IOLIB     = ;
  $IOLIB_MT  = ;
#endif //  __USING_LIBSIM

$MEMINIT = meminit_ts20x.doj;

#ifndef __WORKAROUNDS_ENABLED
  #ifdef __TS_BYTE_ADDRESS
  $LIBC = libc_TS201_ba.dlb;
  $LIBC_MT =  libc_TS201_mt_ba.dlb;
  $LIBDSP =  libdsp_TS201_ba.dlb;
  $LIBCPP    = libcpprt_TS201_ba.dlb;
  $LIBCPP_MT = libcpprt_TS201_mt_ba.dlb;
  $EXIT      = ts_exit_TS201_ba.doj;
  $EXIT_MT   = ts_exit_TS201_mt_ba.doj;
  $HDR       = ts_hdr_TS201_ba.doj;
  $HDR_MT    = ts_hdr_TS201_mt_ba.doj;
  #else
  $LIBC    = libc_TS201.dlb;
  $LIBC_MT = libc_TS201_mt.dlb;
  $LIBDSP  = libdsp_TS201.dlb;
  $LIBCPP    = libcpprt_TS201.dlb;
  $LIBCPP_MT = libcpprt_TS201_mt.dlb;
  $EXIT      = ts_exit_TS201.doj;
  $EXIT_MT   = ts_exit_TS201_mt.doj;
  $HDR       = ts_hdr_TS201.doj;
  $HDR_MT    = ts_hdr_TS201_mt.doj;
  #endif  // __TS_BYTE_ADDRESS
#else  // __WORKAROUNDS_ENABLED
  #ifdef __TS_BYTE_ADDRESS
  $LIBC = libc_TS201_ba_w.dlb;
  $LIBC_MT =  libc_TS201_mt_ba_w.dlb;
  $LIBDSP =  libdsp_TS201_ba_w.dlb;
  $LIBCPP    = libcpprt_TS201_ba_w.dlb;
  $LIBCPP_MT = libcpprt_TS201_mt_ba_w.dlb;
  $EXIT      = ts_exit_TS201_ba_w.doj;
  $EXIT_MT   = ts_exit_TS201_mt_ba_w.doj;
  $HDR       = ts_hdr_TS201_ba_w.doj;
  $HDR_MT    = ts_hdr_TS201_mt_ba_w.doj;
  #else
  $LIBC    = libc_TS201_w.dlb;
  $LIBC_MT = libc_TS201_mt_w.dlb;
  $LIBDSP  = libdsp_TS201_w.dlb;
  $LIBCPP    = libcpprt_TS201_w.dlb;
  $LIBCPP_MT = libcpprt_TS201_mt_w.dlb;
  $EXIT      = ts_exit_TS201_w.doj;
  $EXIT_MT   = ts_exit_TS201_mt_w.doj;
  $HDR       = ts_hdr_TS201_w.doj;
  $HDR_MT    = ts_hdr_TS201_mt_w.doj;
  #endif  // __TS_BYTE_ADDRESS
#endif  // __WORKAROUNDS_ENABLED



// Libraries from the command line are included in COMMAND_LINE_OBJECTS.
// The order of the default libraries within $LIBRARIES is
// libc, I/O libraries, libdsp, libcpp.
// This order has to be maintained.

#ifdef _ADI_THREADS
  // This list describes the libraries/ object files used to build programs
  // with thread support. Any custom file that falls into this category
  // should be added here.
  $OBJECTS = $HDR_MT, $COMMAND_LINE_OBJECTS, $MEMINIT, $EXIT_MT;
  $LIBRARIES = $LIBC_MT, $IOLIB_MT, $LIBDSP,
               $LIBCPP_MT, libsim_TS201.dlb;
#else
  // This list describes the libraries/ object files used to build programs
  // without thread support. Any custom file that falls into this category
  // should be added here.
  $OBJECTS = $HDR, $COMMAND_LINE_OBJECTS, $MEMINIT, $EXIT;
  $LIBRARIES = $LIBC, $IOLIB,  $LIBDSP,
             $LIBCPP, libsim_TS201.dlb;
#endif  // _ADI_THREADS

// Internal memory blocks are 0x20000 (128k)

MEMORY
{
    M0Code      { TYPE(RAM) START(0x00000000) END(0x0001FF9F) WIDTH(32) }
    M2DataA     { TYPE(RAM) START(0x00040000) END(0x0004FFFF) WIDTH(32) }
    M2DataB     { TYPE(RAM) START(0x00050000) END(0x0005FFFF) WIDTH(32) }
    M4DataA     { TYPE(RAM) START(0x00080000) END(0x0008FFFF) WIDTH(32) }
    M4DataB     { TYPE(RAM) START(0x00090000) END(0x0009BFFF) WIDTH(32) }
    M4Heap      { TYPE(RAM) START(0x0009C000) END(0x0009C7FF) WIDTH(32) }
    M4Stack     { TYPE(RAM) START(0x0009C800) END(0x0009FFFF) WIDTH(32) }
    M6DataA     { TYPE(RAM) START(0x000C0000) END(0x000CFFFF) WIDTH(32) }
    M6DataB     { TYPE(RAM) START(0x000D0000) END(0x000DC7FF) WIDTH(32) }
    M6Stack     { TYPE(RAM) START(0x000DC800) END(0x000DFFFF) WIDTH(32) }
    M8DataA     { TYPE(RAM) START(0x00100000) END(0x0010FFFF) WIDTH(32) }
    M8DataB     { TYPE(RAM) START(0x00110000) END(0x0011FFFF) WIDTH(32) }
    M10DataA     { TYPE(RAM) START(0x00140000) END(0x0014FFFF) WIDTH(32) }
    M10DataB     { TYPE(RAM) START(0x00150000) END(0x0015FFFF) WIDTH(32) }

    MS0         { TYPE(RAM) START(0x30000000) END(0x37FFFFFF) WIDTH(32) }
    MS1         { TYPE(RAM) START(0x38000000) END(0x3FFFFFFF) WIDTH(32) }
    MSSD0       { TYPE(RAM) START(0x40000000) END(0x43FFFFFF) WIDTH(32) }
    MSSD1       { TYPE(RAM) START(0x50000000) END(0x53FFFFFF) WIDTH(32) }
    MSSD2       { TYPE(RAM) START(0x60000000) END(0x63FFFFFF) WIDTH(32) }
    MSSD3       { TYPE(RAM) START(0x70000000) END(0x73FFFFFF) WIDTH(32) }

// Memory blocks need to be less than 2 Gig.
     HOST        { TYPE(RAM) START(0x80000000) END(0x8FFFFFFF) WIDTH(32) }
    HOST1       { TYPE(RAM) START(0x90000000) END(0xAFFFFFFF) WIDTH(32) }
    HOST2       { TYPE(RAM) START(0xB0000000) END(0xCFFFFFFF) WIDTH(32) }
    HOST3       { TYPE(RAM) START(0xD0000000) END(0xEFFFFFFF) WIDTH(32) }
    HOST4       { TYPE(RAM) START(0xF0000000) END(0xFFFFFFFF) WIDTH(32) }
}

PROCESSOR p0
{
          RESOLVE( _____system_start, 0x00000000 )
          KEEP( _____system_start, _main, ___ctor_end, __sw_handler_ctor )

    OUTPUT( $COMMAND_LINE_OUTPUT_FILE )

    SECTIONS
    {
        code
        {
            FILL(0xb3c00000)
            INPUT_SECTION_ALIGN(4)
            INPUT_SECTIONS( $OBJECTS(program) $LIBRARIES(program) )
            // The next line adds 10 nops to the end of the code section.
            // This is required on TS201 to prevent uninitialised memory
            // getting into the pipeline.
            . = . + 10;
        } >M0Code

        // Provide support for initialization, including C++ static
        // initialization. This section builds a table of
        // initialization function pointers. These functions are
        // called in order before the main routine is entered. The
        // order is determined by the linker section in which the
        // function pointer has been defined: the C library uses
        // ctor0 through ctor4, and the compiler uses ctor for C++
        // static initializers. The C library uses several sections
        // to satisfy ordering requirements among initializers.
        // The ctorl marker terminates this section.

        ctor
        {
            INPUT_SECTIONS( $OBJECTS(ctor0) $LIBRARIES(ctor0)  )
            INPUT_SECTIONS( $OBJECTS(ctor1) $LIBRARIES(ctor1)  )
            INPUT_SECTIONS( $OBJECTS(ctor2) $LIBRARIES(ctor2)  )
            INPUT_SECTIONS( $OBJECTS(ctor3) $LIBRARIES(ctor3)  )
            INPUT_SECTIONS( $OBJECTS(ctor4) $LIBRARIES(ctor4)  )
            INPUT_SECTIONS( $OBJECTS(ctor)  $LIBRARIES(ctor)  )
            INPUT_SECTIONS( $OBJECTS(ctorl) $LIBRARIES(ctorl)  )
        } >M4DataA

        // Table containing heap segment descriptors
        heaptab
        {
            INPUT_SECTIONS( $OBJECTS(heaptab) $LIBRARIES(heaptab) )
        } >M4DataA

        // Allocate stacks for the application. Note that stacks
        // grow downward, and must be quad-word aligned. This means
        // that the location just after the highest word of the stack
        // is quad-word aligned (evenly divisible by 4). There are two
        // labels for each stack: "*_base" is the location just ABOVE
        // the top of the stack, and "*_limit" is the lowest word that
        // is part of the stack. Each stack occupies all of its own
        // memory block.

        data1
        {
            INPUT_SECTIONS( $OBJECTS(data1) $LIBRARIES(data1) )
        } >M4DataA

        bsz_init
        {
            INPUT_SECTIONS( $OBJECTS(bsz_init) $LIBRARIES(bsz_init))
        } >M4DataA
    
        .meminit {} >M4DataA
    
        bsz ZERO_INIT
        {
            INPUT_SECTIONS( $OBJECTS(bsz) $LIBRARIES(bsz) )
        } >M4DataA

        MEM_ARGV
        {
            INPUT_SECTIONS( $OBJECTS(MEM_ARGV) $LIBRARIES(MEM_ARGV) )
        } >M4DataA


        data2
        {
            INPUT_SECTIONS( $OBJECTS(data2) $LIBRARIES(data2) )
        } >M8DataA



        data2a
        {
            INPUT_SECTIONS( $OBJECTS(data1ab) $OBJECTS(data2a) $LIBRARIES(data2a) )
        } >M2DataA

        data2b
        {
            INPUT_SECTIONS( $OBJECTS(data2b) $LIBRARIES(data2b) )
        } >M2DataB

        data4a
        {
            INPUT_SECTIONS( $OBJECTS(data4a) $LIBRARIES(data4a) )
        } >M4DataA

        data4b
        {
            INPUT_SECTIONS( $OBJECTS(data4b) $LIBRARIES(data4b) )
        } >M4DataB

        data6a
        {
            INPUT_SECTIONS( $OBJECTS(data6a) $LIBRARIES(data6a) )
        } >M6DataA

        data6b
        {
            INPUT_SECTIONS( $OBJECTS(data6b) $LIBRARIES(data6b) )
        } >M6DataB

        data8a
        {
            INPUT_SECTIONS( $OBJECTS(data2ab) $OBJECTS(data8a) $LIBRARIES(data8a) )
        } >M8DataA

        data8b
        {
            INPUT_SECTIONS( $OBJECTS(data8b) $LIBRARIES(data8b) )
        } >M8DataB

        data10a
        {
            INPUT_SECTIONS( $OBJECTS(data3ab) $OBJECTS(data10a) $LIBRARIES(data10a) )
        } >M10DataA

        data10b
        {
            INPUT_SECTIONS( $OBJECTS(data10b) $LIBRARIES(data10b) )
        } >M10DataB

        // Allocate stacks for the application. Note that stacks
        // grow downward, and must be quad-word aligned. This means
        // that the location just after the highest word of the stack
        // is quad-word aligned (evenly divisible by 4). There are two
        // labels for each stack: "*_base" is the location just ABOVE
        // the top of the stack, and "*_limit" is the lowest word that
        // is part of the stack. Each stack occupies all of its own
        // memory block.

        jstackseg
        {
            ldf_jstack_limit = .;
            ldf_jstack_base = . + MEMORY_SIZEOF(M4Stack);
        } >M4Stack

        kstackseg
        {
            ldf_kstack_limit = .;
            ldf_kstack_base = . + MEMORY_SIZEOF(M6Stack);
        } >M6Stack

        // The default heap occupies its own memory block
        defheapseg
        {
            ldf_defheap_base = .;
            ldf_defheap_size = MEMORY_SIZEOF(M4Heap);
        } >M4Heap

    }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -