📄 ztscan_enc.cpp
字号:
case IZ :
break; /* will code the four children */
case VZTR:
mag_sign_encode_SQ(h,w);
case ZTR:
#ifdef _SHAPE_
if(coeffinfo[h][w].mask == 1) /* TBE for four children of out-node */
#endif
mark_ZTR_D(h,w); /* necessary, for bandwise scan */
break;
case VAL:
mag_sign_encode_SQ(h,w);
break;
default:
errorHandler("invalid zerotree symbol in single quant encode");
}
}
#endif // 1124
/*******************************************************
The following single quant routines are for tree
depth scan order.
*******************************************************/
/********************************************************
Function Name
-------------
Void wavelet_higher_bands_encode_SQ_tree()
Arguments
---------
None.
Description
-----------
Control program for encoding AC information for one
color component. Single quant mode.
Functions Called
----------------
cachb_encode_SQ_tree()
mzte_ac_encoder_init()
mzte_ac_model_init()
mzte_ac_model_done()
mzte_ac_encoder_done()
Return Value
------------
None.
********************************************************/
Void CVTCEncoder::wavelet_higher_bands_encode_SQ_tree() // hjlee 0928
{
noteDetail("Encoding AC (wavelet_higher_bands_encode_SQ)....");
/* init arithmetic coder */
mzte_ac_encoder_init(&ace);
// hjlee 0901
for (color=0; color<mzte_codec.m_iColors; color++)
probModelInitSQ(color);
cachb_encode_SQ_tree(); // hjlee 0928
// hjlee 0901
for (color=0; color<mzte_codec.m_iColors; color++)
/* close arithmetic coder */
probModelFreeSQ(color);
bit_stream_length=mzte_ac_encoder_done(&ace);
noteDetail("Completed encoding AC.");
}
/********************************************************
Function Name
-------------
static Void cachb_encode_SQ_tree()
Arguments
---------
None.
Description
-----------
Encode AC information for single quant mode, tree-depth scan.
Functions Called
----------------
encode_pixel_SQ_tree()
Return Value
------------
None.
********************************************************/
Void CVTCEncoder::cachb_encode_SQ_tree()
{
Int h,w,dc_h,dc_w,dc_h2,dc_w2;
dc_h=mzte_codec.m_iDCHeight;
dc_w=mzte_codec.m_iDCWidth;
dc_h2=dc_h<<1;
dc_w2=dc_w<<1;
for(h=0;h<dc_h;h++)
for(w=0;w<dc_w;w++) // 1124
for (color=0; color<mzte_codec.m_iColors; color++)
{
SNR_IMAGE *snr_image;
Int tw,sw,sh,n; // 1124
snr_image=&(mzte_codec.m_SPlayer[color].SNRlayer.snr_image);
height=mzte_codec.m_Image[color].height;
width=mzte_codec.m_Image[color].width;
setProbModelsSQ(color); // hjlee 0901
coeffinfo=mzte_codec.m_SPlayer[color].coeffinfo;
/* LH */
n = 0;
for (tw=mzte_codec.m_iDCWidth; tw < width; tw<<=1)
{
sh = h << n;
sw = (w+dc_w) << n;
encodeSQBlocks(sh,sw,n);
n++;
}
/* HL */
n = 0;
for (tw=mzte_codec.m_iDCWidth; tw < width; tw<<=1)
{
sh = (h+dc_h) << n;
sw = w << n;
encodeSQBlocks(sh,sw,n);
n++;
}
/* HH */
n = 0;
for (tw=mzte_codec.m_iDCWidth; tw < width; tw<<=1)
{
sh = (h+dc_h) << n;
sw = (w+dc_w) << n;
encodeSQBlocks(sh,sw,n);
n++;
}
#if 0
encode_pixel_SQ_tree(h,w); /* LH */
encode_pixel_SQ_tree(h+dc_h,w-dc_w); /* HL */
encode_pixel_SQ_tree(h+dc_h,w); /* HH */
#endif
}
}
/********************************************************
Function Name
-------------
static Void encode_pixel_SQ_tree(Int h,Int w)
Arguments
---------
Int h,Int w - position of a pixel in height and width
Description
-----------
Encoding the type and/or value of a coefficient, a
recursive function.
Functions Called
----------------
mag_sign_encode_SQ()
mzte_ac_encode_symbol()
encode_pixel_SQ_tree()
Return Value
------------
None.
********************************************************/
Void CVTCEncoder::encode_pixel_SQ(Int h,Int w)
{
UChar zt_type;
Int l;
if(coeffinfo[h][w].type == ZTR_D)
return;
l=xy2wvtDecompLev(w,h);
/* code leave coefficients, value only, no type */
if(IS_STATE_LEAF(coeffinfo[h][w].state)){
/* Map type to leaf code word ZTR->0, VZTR->1 */
zt_type = (coeffinfo[h][w].type!=ZTR);
mzte_ac_encode_symbol(&ace,acm_type[l][CONTEXT_LINIT],zt_type);
if (coeffinfo[h][w].type==VZTR)
mag_sign_encode_SQ(h,w);
return;
}
/* code zerotree symbol */
mzte_ac_encode_symbol(&ace,acm_type[l][CONTEXT_INIT],
zt_type=coeffinfo[h][w].type);
/* code magnitude and sign */
/* For Arbitrary-Shape, out-node will always has zero coefficient,
so only IZ or ZTR may be the zt_type -- SL*/
switch(zt_type){
case IZ :
break; /* will code the four children */
case VZTR:
mag_sign_encode_SQ(h,w);
case ZTR:
mark_ZTR_D(h,w); /* necessary, for bandwise scan */
break;
case VAL:
mag_sign_encode_SQ(h,w);
break;
default:
errorHandler("invalid zerotree symbol in single quant encode");
}
}
#if 0
Void CVTCEncoder::encode_pixel_SQ_tree(Int h0,Int w0)
{
UChar zt_type;
Int h, w, k;
Int dcc[4]; /* Don't Code Children */
Int nSib; /* number siblings */
Int l;
l=xy2wvtDecompLev(w0,h0);
nSib = (h0<(mzte_codec.m_iDCHeight<<1) && w0<(mzte_codec.m_iDCWidth<<1)) ? 1 : 4;
/********************* CODE SIBLINGS *****************************/
for (k=0; k<nSib; ++k)
{
h = h0 + (k/2);
w = w0 + (k%2);
/* code leave coefficients, value only, no type */
if(IS_STATE_LEAF(coeffinfo[h][w].state))
{
#ifdef _SHAPE_ /* skip out-node */
if(coeffinfo[h][w].mask == 1)
{
#endif
/* Map type to leaf code word ZTR->0, VZTR->1 */
zt_type = (coeffinfo[h][w].type!=ZTR);
mzte_ac_encode_symbol(&ace,acm_type[l][CONTEXT_LINIT],zt_type);
if (coeffinfo[h][w].type==VZTR)
mag_sign_encode_SQ(h,w);
#ifdef _SHAPE_
}
#endif
continue;
}
/* code zerotree symbol */
#ifdef _SHAPE_ /* skip out-node */
if(coeffinfo[h][w].mask == 1)
#endif
mzte_ac_encode_symbol(&ace,acm_type[l][CONTEXT_INIT],
zt_type=coeffinfo[h][w].type);
#ifdef _SHAPE_
else
zt_type=coeffinfo[h][w].type;
#endif
/* code magnitude and sign */
/* For Arbitrary-Shape, out-node will always has zero coefficient,
so only IZ or ZTR may be the zt_type -- SL*/
switch(zt_type){
case IZ :
dcc[k]=0;
break; /* will code the four children */
case VZTR:
mag_sign_encode_SQ(h,w);
case ZTR:
dcc[k]=1;
#ifdef _SHAPE_
if(coeffinfo[h][w].mask != 1) { /* TBE for four children of out-node */
dcc[k] = 0;
}
#endif
break;
case VAL:
dcc[k]=0;
mag_sign_encode_SQ(h,w);
break;
default:
errorHandler("invalid zerotree symbol in single quant encode");
}
}
/********************* CODE CHILDREN *****************************/
if (!IS_STATE_LEAF(coeffinfo[h0][w0].state) )
{
Int i, j;
for (k=0; k<nSib; ++k)
{
if (dcc[k]==0)
{
h = h0 + (k/2);
w = w0 + (k%2);
/* scan children */
i=h<<1; j=w<<1;
encode_pixel_SQ_tree(i,j);
}
}
}
}
#endif
/********************************************************
Function Name
-------------
static Void mag_sign_encode_SQ(Int h,Int w)
Arguments
---------
Int h,Int w - position of a pixel
Description
-----------
Encode the value of a coefficient.
Functions Called
----------------
mzte_ac_encode_symbol()
Return Value
------------
None.
********************************************************/
Void CVTCEncoder::mag_sign_encode_SQ(Int h,Int w)
{
Int val,v_sign;
Int l;
if((val=coeffinfo[h][w].quantized_value)>0)
v_sign=0;
else
{
val=-val;
v_sign=1;
}
l=xy2wvtDecompLev(w,h);
bitplane_encode(val-1,l,WVTDECOMP_NUMBITPLANES(color,l));
mzte_ac_encode_symbol(&ace,acm_sign[l],v_sign);
}
/*********************************************************************/
/****************************** AC *********************************/
/************************** Multi quant ****************************/
/*********************************************************************/
Void CVTCEncoder::bitplane_res_encode(Int val,Int l,Int max_bplane)
{
register i,k=0;
for(i=max_bplane-1;i>=0;i--,k++)
mzte_ac_encode_symbol(&ace,&acm_bpres[l][k],(val>>i)&1);
}
/*********************************************************************/
/****************************** AC *********************************/
/************************** Multi quant ****************************/
/*********************************************************************/
/********************************************************
Function Name
-------------
Void wavelet_higher_bands_encode_MQ(Int scanDirection)
Arguments
---------
Int scanDirection - 0 <=> tree, 1 <=> band
Description
-----------
Control program for encoding AC information for one
color component. Multi quant mode.
Functions Called
----------------
cachb_encode_MQ_band()
mzte_ac_encoder_init()
mzte_ac_model_init()
mzte_ac_model_done()
mzte_ac_encoder_done()
initContext_ * ()
freeContext_ * ()
Return Value
------------
None.
********************************************************/
Void CVTCEncoder::wavelet_higher_bands_encode_MQ(Int scanDirection)
{
noteDetail("Encoding AC (wavelet_higher_bands_encode_MQ)....");
/* init arithmetic coder */
mzte_ac_encoder_init(&ace);
if (scanDirection==0)
cachb_encode_MQ_tree();
else
cachb_encode_MQ_band();
/* close arithmetic coder */
bit_stream_length=mzte_ac_encoder_done(&ace);
}
/********************************************************
Function Name
-------------
static Void mark_ZTR_D(Int h,Int w)
Arguments
---------
Int h,Int w - position of a pixel
Description
-----------
Mark the coefficient at (h,w) and its descendents as
zerotree descendents.
Functions Called
----------------
mark_ZTR_D()
Return Value
------------
None.
********************************************************/
Void CVTCEncoder::mark_ZTR_D(Int h,Int w)
{
Int i,j;
i=h<<1; j=w<<1;
if(i<height && j<width){
coeffinfo[i][j].type = ZTR_D;
coeffinfo[i+1][j].type = ZTR_D;
coeffinfo[i][j+1].type = ZTR_D;
coeffinfo[i+1][j+1].type = ZTR_D;
mark_ZTR_D(i,j);
mark_ZTR_D(i+1,j);
mark_ZTR_D(i,j+1);
mark_ZTR_D(i+1,j+1);
}
}
/**********************************************************************/
/*************** MQ BAND ********************************/
/**********************************************************************/
/********************************************************
Function Name
-------------
static Void cachb_encode_MQ_band()
Arguments
---------
None.
Description
-----------
Encode AC information for all color components for spatial level.
Multiple quant, bandwise scan.
Functions Called
----------------
clear_ZTR_D();
codeBlocks();
encode_pixel_MQ()
Return Value
------------
None.
********************************************************/
Void CVTCEncoder::cachb_encode_MQ_band()
{
Int h,w;
Int ac_h,ac_w,ac_h2,ac_w2;
Int acH,acW,acH2,acW2;
Int layer, nCol;
Int n; /* layer index - for codeBlocks function */
Int k; /* block jump for the layer */
/* clear the ZTR_D type from the previous pass */
for (color=0; color<NCOL; ++color)
{
coeffinfo=mzte_codec.m_SPlayer[color].coeffinfo;
height=mzte_codec.m_SPlayer[color].height;
width=mzte_codec.m_SPlayer[color].width;
clear_ZTR_D(coeffinfo, width, height);
}
for (color=0; color<NCOL; ++color)
probModelInitMQ(color); // hjlee 0901
acH=mzte_codec.m_iDCHeight;
acW=mzte_codec.m_iDCWidth;
acH2=acH<<1;
acW2=acW<<1;
/* scan each coefficients in the spatial layer */
/* assume luma dimensions are >= chroma dimensions */
layer=0;
while(acH2<=mzte_codec.m_SPlayer[0].height
&& acW2<=mzte_codec.m_SPlayer[0].width)
{
nCol = (layer==0) ? 1 : NCOL;
for (color=0; color < nCol; ++color)
{
SNR_IMAGE *snr_image;
noteProgress(" Coding Layer %d, Color %d", layer - (color!=0), color);
ac_h2=acH2;
ac_w2=acW2;
ac_h=acH;
ac_w=acW;
if (color)
{
ac_h2>>=1;
ac_w2>>=1;
ac_h>>=1;
ac_w>>=1;
}
snr_image=&(mzte_codec.m_SPlayer[color].SNRlayer.snr_image);
coeffinfo=mzte_codec.m_SPlayer[color].coeffinfo;
height=mzte_codec.m_SPlayer[color].height;
width=mzte_codec.m_SPlayer[color].width;
setProbModelsMQ(color);
/* Go through bands */
n = layer - (color>0);
k = 1<<n;
for(h=0;h<ac_h;h+=k)
for(w=ac_w;w<ac_w2;w+=k)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -